These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37214277)

  • 1. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.
    Borazjani I; Ge L; Sotiropoulos F
    J Comput Phys; 2008 Aug; 227(16):7587-7620. PubMed ID: 20981246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immersed Methods for Fluid-Structure Interaction.
    Griffith BE; Patankar NA
    Annu Rev Fluid Mech; 2020; 52():421-448. PubMed ID: 33012877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems.
    Monteleone A; Di Leonardo S; Napoli E; Burriesci G
    Comput Methods Programs Biomed; 2024 Mar; 245():108034. PubMed ID: 38244340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A continuum mechanics-based musculo-mechanical model for esophageal transport.
    Kou W; Griffith BE; Pandolfino JE; Kahrilas PJ; Patankar NA
    J Comput Phys; 2017 Oct; 348():433-459. PubMed ID: 29081541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Immersed Boundary method with divergence-free velocity interpolation and force spreading.
    Bao Y; Donev A; Griffith BE; McQueen DM; Peskin CS
    J Comput Phys; 2017 Oct; 347():183-206. PubMed ID: 31595090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eulerian simulation of complex suspensions and biolocomotion in three dimensions.
    Lin YL; Derr NJ; Rycroft CH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
    Luo H; Mittal R; Zheng X; Bielamowicz SA; Walsh RJ; Hahn JK
    J Comput Phys; 2008 Nov; 227(22):9303-9332. PubMed ID: 19936017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve.
    Joda A; Jin Z; Summers J; Korossis S
    Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.