These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37214411)

  • 1. Hybrid algorithm for the detection of turbulent flame fronts.
    Chaib O; Zheng Y; Hochgreb S; Boxx I
    Exp Fluids; 2023; 64(5):104. PubMed ID: 37214411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flame front tracking by laser induced fluorescence spectroscopy and advanced image analysis.
    Abu-Gharbieh R; Hamarneh G; Gustavsson T; Kaminski C
    Opt Express; 2001 Feb; 8(5):278-87. PubMed ID: 19417815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network structure of turbulent premixed flames.
    Singh J; Belur Vishwanath R; Chaudhuri S; Sujith RI
    Chaos; 2017 Apr; 27(4):043107. PubMed ID: 28456168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames.
    Ma L; Lei Q; Capil T; Hammack SD; Carter CD
    Opt Lett; 2017 Jan; 42(2):267-270. PubMed ID: 28081089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous extraction of optimal flame fronts in OH planar laser-induced fluorescence images.
    Sweeney M; Hochgreb S
    Appl Opt; 2009 Jul; 48(19):3866-77. PubMed ID: 19571948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flame front detection and characterization using conditioned particle image velocimetry (CPIV).
    Pfadler S; Beyrau F; Leipertz A
    Opt Express; 2007 Nov; 15(23):15444-56. PubMed ID: 19550830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of turbulent flame fronts with planar laser-induced fluorescence.
    Kychakoff G; Howe RD; Hanson RK; Drake MC; Pitz RW; Lapp M; Penney CM
    Science; 1984 Apr; 224(4647):382-4. PubMed ID: 17741216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames.
    Wang Z; Stamatoglou P; Li Z; Aldén M; Richter M
    Opt Express; 2017 Nov; 25(24):30214-30228. PubMed ID: 29221053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
    Chaudhuri S; Wu F; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033005. PubMed ID: 24125342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite flame thickness effects on Kolmogorov-Petrovsky-Piskunov turbulent burning velocities.
    Somappa S; Acharya V; Lieuwen T
    Phys Rev E; 2022 Nov; 106(5-2):055107. PubMed ID: 36559363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames.
    Li Z; Rosell J; Aldén M; Richter M
    Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy.
    Malm H; Sparr G; Hult J; Kaminski CF
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2148-56. PubMed ID: 11140473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability.
    Yu R; Bai XS; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063028. PubMed ID: 26764824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator.
    Miller JD; Engel SR; Tröger JW; Meyer TR; Seeger T; Leipertz A
    Appl Opt; 2012 May; 51(14):2589-600. PubMed ID: 22614478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 10  kHz 2D thermometry in turbulent reacting flows using two-color OH planar laser-induced fluorescence.
    Hsu PS; Jiang N; Lauriola D; Grib SW; Schumaker SA; Caswell AW; Roy S
    Appl Opt; 2021 May; 60(15):C1-C7. PubMed ID: 34143099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability.
    Chaudhuri S; Akkerman V; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026322. PubMed ID: 21929105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of CN by the use of planar laser-induced fluorescence in a cross section of an unseeded turbulent CH(4)-air flame.
    Hirano A; Tsujishita M
    Appl Opt; 1994 Nov; 33(33):7777-80. PubMed ID: 20962989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.