These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37214964)
1. Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus. Fung HYJ; Neisman AB; Bernardes NE; Jiou J; Chook YM bioRxiv; 2024 Apr; ():. PubMed ID: 37214964 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of RanGTP priming H2A-H2B release from Kap114 in an atypical RanGTP•Kap114•H2A-H2B complex. Jiou J; Shaffer JM; Bernades NE; Fung HYJ; Kikumoto Dias J; D'Arcy S; Chook YM Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2301199120. PubMed ID: 37450495 [TBL] [Abstract][Full Text] [Related]
3. Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9. Shaffer JM; Jiou J; Tripathi K; Olaluwoye OS; Fung HYJ; Chook YM; D'Arcy S bioRxiv; 2023 Jan; ():. PubMed ID: 36747879 [TBL] [Abstract][Full Text] [Related]
4. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. Aguilar-Gurrieri C; Larabi A; Vinayachandran V; Patel NA; Yen K; Reja R; Ebong IO; Schoehn G; Robinson CV; Pugh BF; Panne D EMBO J; 2016 Jul; 35(13):1465-82. PubMed ID: 27225933 [TBL] [Abstract][Full Text] [Related]
5. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Shaffer JM; Jiou J; Tripathi K; Olaluwoye OS; Fung HYJ; Chook YM; D'Arcy S Structure; 2023 Aug; 31(8):903-911.e3. PubMed ID: 37379840 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Solution Structures of Whole Human NAP1 Dimer Bound to One and Two Histone H2A-H2B Heterodimers Obtained by Integrative Methods. Ohtomo H; Yamane T; Oda T; Kodera N; Kurita JI; Tsunaka Y; Amyot R; Ikeguchi M; Nishimura Y J Mol Biol; 2023 Aug; 435(15):168189. PubMed ID: 37380014 [TBL] [Abstract][Full Text] [Related]
7. Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form. D'Arcy S; Martin KW; Panchenko T; Chen X; Bergeron S; Stargell LA; Black BE; Luger K Mol Cell; 2013 Sep; 51(5):662-77. PubMed ID: 23973327 [TBL] [Abstract][Full Text] [Related]
8. Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions. Straube K; Blackwell JS; Pemberton LF Traffic; 2010 Feb; 11(2):185-97. PubMed ID: 19929865 [TBL] [Abstract][Full Text] [Related]
9. Distinct roles for histone chaperones in the deposition of Htz1 in chromatin. Liu H; Zhu M; Mu Y; Liu L; Li G; Wan Y Biosci Rep; 2014 Sep; 34(5):. PubMed ID: 25338502 [TBL] [Abstract][Full Text] [Related]
10. Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. Padavannil A; Sarkar P; Kim SJ; Cagatay T; Jiou J; Brautigam CA; Tomchick DR; Sali A; D'Arcy S; Chook YM Elife; 2019 Mar; 8():. PubMed ID: 30855230 [TBL] [Abstract][Full Text] [Related]
11. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome. Levchenko V; Jackson V Biochemistry; 2004 Mar; 43(9):2359-72. PubMed ID: 14992573 [TBL] [Abstract][Full Text] [Related]
12. Histone chaperone Nap1 dismantles an H2A/H2B dimer from a partially unwrapped nucleosome. Nagae F; Takada S; Terakawa T Nucleic Acids Res; 2023 Jun; 51(11):5351-5363. PubMed ID: 37177996 [TBL] [Abstract][Full Text] [Related]
13. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus. Chen X; D'Arcy S; Radebaugh CA; Krzizike DD; Giebler HA; Huang L; Nyborg JK; Luger K; Stargell LA Mol Cell Biol; 2016 Apr; 36(8):1287-96. PubMed ID: 26884462 [TBL] [Abstract][Full Text] [Related]
14. C-terminal acidic domain of histone chaperone human NAP1 is an efficient binding assistant for histone H2A-H2B, but not H3-H4. Ohtomo H; Akashi S; Moriwaki Y; Okuwaki M; Osakabe A; Nagata K; Kurumizaka H; Nishimura Y Genes Cells; 2016 Mar; 21(3):252-63. PubMed ID: 26841755 [TBL] [Abstract][Full Text] [Related]
15. NAP1-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B. Luo Q; Wang B; Wu Z; Jiang W; Wang Y; Du K; Zhou N; Zheng L; Gan J; Shen WH; Ma J; Dong A Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30391-30399. PubMed ID: 33199628 [TBL] [Abstract][Full Text] [Related]
16. The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1. Krajewski WA Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129497. PubMed ID: 31785324 [TBL] [Abstract][Full Text] [Related]
17. Structural Insights into ceNAP1 Chaperoning Activity toward ceH2A-H2B. Liu Y; Xu L; Xie C; Hong J; Li F; Ruan K; Chen J; Wu J; Shi Y Structure; 2019 Dec; 27(12):1798-1810.e3. PubMed ID: 31653339 [TBL] [Abstract][Full Text] [Related]
18. Modulation of histone deposition by the karyopherin kap114. Mosammaparast N; Del Rosario BC; Pemberton LF Mol Cell Biol; 2005 Mar; 25(5):1764-78. PubMed ID: 15713633 [TBL] [Abstract][Full Text] [Related]
19. Single-Molecule Investigations on Histone H2A-H2B Dynamics in the Nucleosome. Lee J; Lee TH Biochemistry; 2017 Feb; 56(7):977-985. PubMed ID: 28128545 [TBL] [Abstract][Full Text] [Related]
20. NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation. Kepert JF; Mazurkiewicz J; Heuvelman GL; Tóth KF; Rippe K J Biol Chem; 2005 Oct; 280(40):34063-72. PubMed ID: 16105835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]