These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome. O'Donnell BM; Mackie TD; Subramanya AR; Brodsky JL J Biol Chem; 2017 Aug; 292(31):12813-12827. PubMed ID: 28630040 [TBL] [Abstract][Full Text] [Related]
4. Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Peters M; Ermert S; Jeck N; Derst C; Pechmann U; Weber S; Schlingmann KP; Seyberth HW; Waldegger S; Konrad M Kidney Int; 2003 Sep; 64(3):923-32. PubMed ID: 12911542 [TBL] [Abstract][Full Text] [Related]
5. Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome. Jeck N; Derst C; Wischmeyer E; Ott H; Weber S; Rudin C; Seyberth HW; Daut J; Karschin A; Konrad M Kidney Int; 2001 May; 59(5):1803-11. PubMed ID: 11318951 [TBL] [Abstract][Full Text] [Related]
6. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Nguyen NH; Sheng S; Banerjee A; Guerriero CJ; Chen J; Wang X; Mackie TD; Welling PA; Kleyman TR; Bahar I; Carlson AE; Brodsky JL Mol Biol Cell; 2024 Sep; 35(9):ar119. PubMed ID: 39024255 [TBL] [Abstract][Full Text] [Related]
7. Complementary computational and experimental evaluation of missense variants in the ROMK potassium channel. Ponzoni L; Nguyen NH; Bahar I; Brodsky JL PLoS Comput Biol; 2020 Apr; 16(4):e1007749. PubMed ID: 32251469 [TBL] [Abstract][Full Text] [Related]
8. The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). Mackie TD; Kim BY; Subramanya AR; Bain DJ; O'Donnell AF; Welling PA; Brodsky JL J Biol Chem; 2018 Mar; 293(9):3201-3217. PubMed ID: 29311259 [TBL] [Abstract][Full Text] [Related]
9. Transient hyponatremia of prematurity caused by mild Bartter syndrome type II: a case report. Verma S; Chanchlani R; Siu VM; Filler G BMC Pediatr; 2020 Jun; 20(1):311. PubMed ID: 32590952 [TBL] [Abstract][Full Text] [Related]
10. Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Starremans PG; van der Kemp AW; Knoers NV; van den Heuvel LP; Bindels RJ Pflugers Arch; 2002 Jan; 443(3):466-72. PubMed ID: 11810218 [TBL] [Abstract][Full Text] [Related]
11. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure. Zhou X; Zhang Z; Shin MK; Horwitz SB; Levorse JM; Zhu L; Sharif-Rodriguez W; Streltsov DY; Dajee M; Hernandez M; Pan Y; Urosevic-Price O; Wang L; Forrest G; Szeto D; Zhu Y; Cui Y; Michael B; Balogh LA; Welling PA; Wade JB; Roy S; Sullivan KA Hypertension; 2013 Aug; 62(2):288-94. PubMed ID: 23753405 [TBL] [Abstract][Full Text] [Related]
12. Late-Onset Bartter Syndrome Type II Due to a Homozygous Mutation in KCNJ1 Gene: A Case Report and Literature Review. Elfert KA; Geller DS; Nelson-Williams C; Lifton RP; Al-Malki H; Nauman A Am J Case Rep; 2020 Sep; 21():e924527. PubMed ID: 32997650 [TBL] [Abstract][Full Text] [Related]
13. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet. Bailey MA; Cantone A; Yan Q; MacGregor GG; Leng Q; Amorim JB; Wang T; Hebert SC; Giebisch G; Malnic G Kidney Int; 2006 Jul; 70(1):51-9. PubMed ID: 16710355 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function. Derst C; Konrad M; Köckerling A; Károlyi L; Deschenes G; Daut J; Karschin A; Seyberth HW Biochem Biophys Res Commun; 1997 Jan; 230(3):641-5. PubMed ID: 9015377 [TBL] [Abstract][Full Text] [Related]
15. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Shaukat I; Bakhos-Douaihy D; Zhu Y; Seaayfan E; Demaretz S; Frachon N; Weber S; Kömhoff M; Vargas-Poussou R; Laghmani K Hum Mutat; 2021 Aug; 42(8):947-968. PubMed ID: 33973684 [TBL] [Abstract][Full Text] [Related]
16. Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course. Cho JT; Guay-Woodford LM J Korean Med Sci; 2003 Feb; 18(1):65-8. PubMed ID: 12589089 [TBL] [Abstract][Full Text] [Related]
17. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. Lu M; Wang T; Yan Q; Yang X; Dong K; Knepper MA; Wang W; Giebisch G; Shull GE; Hebert SC J Biol Chem; 2002 Oct; 277(40):37881-7. PubMed ID: 12130653 [TBL] [Abstract][Full Text] [Related]
18. Late-Onset Bartter Syndrome Type II Due to a Novel Compound Heterozygous Mutation in Tian M; Peng H; Bi X; Wang YQ; Zhang YZ; Wu Y; Zhang BR Front Med (Lausanne); 2022; 9():862514. PubMed ID: 35463019 [TBL] [Abstract][Full Text] [Related]