These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37215044)

  • 1. Beyond rhythm - A framework for understanding the frequency spectrum of neural activity.
    Perrenoud Q; Cardin JA
    bioRxiv; 2023 May; ():. PubMed ID: 37215044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond rhythm - a framework for understanding the frequency spectrum of neural activity.
    Perrenoud Q; Cardin JA
    Front Syst Neurosci; 2023; 17():1217170. PubMed ID: 37719024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity.
    Donoghue T; Dominguez J; Voytek B
    eNeuro; 2020; 7(6):. PubMed ID: 32978216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral slowing in chronic stroke reflects abnormalities in both periodic and aperiodic neural dynamics.
    Johnston PR; McIntosh AR; Meltzer JA
    Neuroimage Clin; 2023; 37():103277. PubMed ID: 36495856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease.
    Cole SR; van der Meij R; Peterson EJ; de Hemptinne C; Starr PA; Voytek B
    J Neurosci; 2017 May; 37(18):4830-4840. PubMed ID: 28416595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations.
    Gerster M; Waterstraat G; Litvak V; Lehnertz K; Schnitzler A; Florin E; Curio G; Nikulin V
    Neuroinformatics; 2022 Oct; 20(4):991-1012. PubMed ID: 35389160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Oscillatory ReConstruction Algorithm adaptively identifies frequency bands to improve spectral decomposition in human and rodent neural recordings.
    Watrous AJ; Buchanan RJ
    J Neurophysiol; 2020 Dec; 124(6):1914-1922. PubMed ID: 33052729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycle-by-cycle analysis of neural oscillations.
    Cole S; Voytek B
    J Neurophysiol; 2019 Aug; 122(2):849-861. PubMed ID: 31268801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Waveform-Independent Measure of Recurrent Neural Activity.
    Weber I; Oehrn CR
    Front Neuroinform; 2022; 16():800116. PubMed ID: 35321152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.
    Zhou H; Melloni L; Poeppel D; Ding N
    Front Hum Neurosci; 2016; 10():274. PubMed ID: 27375465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications.
    Schanze T; Eckhorn R
    Int J Psychophysiol; 1997 Jun; 26(1-3):171-89. PubMed ID: 9203002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced target identification in STN-DBS with beta power of combined local field potentials and spiking activity.
    Verhagen R; Zwartjes DG; Heida T; Wiegers EC; Contarino MF; de Bie RM; van den Munckhof P; Schuurman PR; Veltink PH; Bour LJ
    J Neurosci Methods; 2015 Sep; 253():116-25. PubMed ID: 26079495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct frequency bands in the local field potential are differently tuned to stimulus drift rate.
    Salelkar S; Somasekhar GM; Ray S
    J Neurophysiol; 2018 Aug; 120(2):681-692. PubMed ID: 29694281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-wide oscillations in the parkinsonian state: alterations in neuronal activities occur in the premotor cortex in parkinsonian nonhuman primates.
    Wang J; Johnson LA; Jensen AL; Baker KB; Molnar GF; Johnson MD; Vitek JL
    J Neurophysiol; 2017 Jun; 117(6):2242-2249. PubMed ID: 28228579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal Neural Circuits Respond to Optogenetic Pacing of Theta Frequencies by Generating Accelerated Oscillation Frequencies.
    Zutshi I; Brandon MP; Fu ML; Donegan ML; Leutgeb JK; Leutgeb S
    Curr Biol; 2018 Apr; 28(8):1179-1188.e3. PubMed ID: 29628373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Stimulation Waveform on the Non-linear Entrainment of Cortical Alpha Oscillations.
    Hutt A; Griffiths JD; Herrmann CS; Lefebvre J
    Front Neurosci; 2018; 12():376. PubMed ID: 29997467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation.
    Paulk AC; Zhou Y; Stratton P; Liu L; van Swinderen B
    J Neurophysiol; 2013 Oct; 110(7):1703-21. PubMed ID: 23864378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Hidden Cognitive States From Behavior and Physiology Using a Bayesian Approach.
    Yousefi A; Basu I; Paulk AC; Peled N; Eskandar EN; Dougherty DD; Cash SS; Widge AS; Eden UT
    Neural Comput; 2019 Sep; 31(9):1751-1788. PubMed ID: 31335292
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.