These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37216215)

  • 1. Limitations of Atomistic Molecular Dynamics to Reveal Ejection of Proteins from Charged Nanodroplets.
    Kwan V; Ballaney P; Titiksha ; Consta S
    J Phys Chem B; 2023 Jun; 127(21):4829-4842. PubMed ID: 37216215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets.
    Soltani S; Oh MI; Consta S
    J Chem Phys; 2015 Mar; 142(11):114307. PubMed ID: 25796249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charging and Release Mechanisms of Flexible Macromolecules in Droplets.
    Oh MI; Consta S
    J Am Soc Mass Spectrom; 2017 Nov; 28(11):2262-2279. PubMed ID: 28801879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of the ejection mechanisms of charged macromolecules from liquid droplets.
    Consta S; Malevanets A
    J Chem Phys; 2013 Jan; 138(4):044314. PubMed ID: 23387591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release mechanisms of poly(ethylene glycol) macroions from aqueous charged nanodroplets.
    Chung JK; Consta S
    J Phys Chem B; 2012 May; 116(19):5777-85. PubMed ID: 22530680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-induced conformational changes of PEG-(Na(+))(n) in a vacuum and aqueous nanodroplets.
    Consta S; Chung JK
    J Phys Chem B; 2011 Sep; 115(35):10447-55. PubMed ID: 21812403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic Modeling of Jet Formation in Charged Droplets.
    Consta S
    J Phys Chem B; 2022 Oct; 126(41):8350-8357. PubMed ID: 36201739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of counterions on the charging mechanisms of a macromolecule in aqueous nanodrops.
    Sharawy M; Consta S
    J Chem Phys; 2014 Sep; 141(10):104321. PubMed ID: 25217930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do non-covalent complexes dissociate in droplets? A case study of the desolvation of dsDNA from a charged aqueous nanodrop.
    Sharawy M; Consta S
    Phys Chem Chem Phys; 2015 Oct; 17(38):25550-62. PubMed ID: 26366993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Gaseous Peptide Ions from Electrospray Droplets: Competition between the Ion Evaporation Mechanism and Charged Residue Mechanism.
    Aliyari E; Konermann L
    Anal Chem; 2022 May; 94(21):7713-7721. PubMed ID: 35587384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chain Ejection Model for Electrospray Ionization of Unfolded Proteins: Evidence from Atomistic Simulations and Ion Mobility Spectrometry.
    Metwally H; Duez Q; Konermann L
    Anal Chem; 2018 Aug; 90(16):10069-10077. PubMed ID: 30040388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process.
    Metwally H; McAllister RG; Popa V; Konermann L
    Anal Chem; 2016 May; 88(10):5345-54. PubMed ID: 27093467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manifestations of charge induced instability in droplets effected by charged macromolecules.
    Consta S; Malevanets A
    Phys Rev Lett; 2012 Oct; 109(14):148301. PubMed ID: 23083292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroion-Solvent Interactions in Charged Droplets.
    Consta S; Oh MI; Sharawy M; Malevanets A
    J Phys Chem A; 2018 Jun; 122(24):5239-5250. PubMed ID: 29561618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strengths and Weaknesses of Molecular Simulations of Electrosprayed Droplets.
    Consta S; In Oh M; Kwan V; Malevanets A
    J Am Soc Mass Spectrom; 2018 Dec; 29(12):2287-2296. PubMed ID: 30259408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations.
    McAllister RG; Metwally H; Sun Y; Konermann L
    J Am Chem Soc; 2015 Oct; 137(39):12667-76. PubMed ID: 26325619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MD Simulations of Peptide-Containing Electrospray Droplets: Effects of Parameter Settings on the Predicted Mechanisms of Gas Phase Ion Formation.
    Hanifi K; Scrosati PM; Konermann L
    J Phys Chem B; 2024 Jun; 128(25):5973-5986. PubMed ID: 38864851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets.
    Konermann L; Kim S
    J Chem Theory Comput; 2022 Jun; 18(6):3781-3794. PubMed ID: 35544700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Protein Electrospray Charge States by Multivalent Metal Ions: Mechanistic Insights from MD Simulations and Mass Spectrometry Experiments.
    Martin LM; Konermann L
    J Am Soc Mass Spectrom; 2020 Jan; 31(1):25-33. PubMed ID: 32881517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.