BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37216301)

  • 1. CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI.
    Upendra RR; Wentz BJ; Simon R; Shontz SM; Linte CA
    Funct Imaging Model Heart; 2021 Jun; 12738():253-263. PubMed ID: 37216301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images.
    Upendra RR; Wentz BJ; Shontz SM; Linte CA
    Comput Cardiol (2010); 2020 Sep; 47():. PubMed ID: 34079839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using A Deep Learning-Based Deformable Registration Framework.
    Upendra RR; Kamrul Hasan SM; Simon R; Wentz BJ; Shontz SM; Sacks MS; Linte CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3795-3799. PubMed ID: 34892062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint Deep Learning Framework for Image Registration and Segmentation of Late Gadolinium Enhanced MRI and Cine Cardiac MRI.
    Upendra RR; Simon R; Linte CA
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11598():. PubMed ID: 34079155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images.
    Abdeltawab H; Khalifa F; Taher F; Alghamdi NS; Ghazal M; Beache G; Mohamed T; Keynton R; El-Baz A
    Comput Med Imaging Graph; 2020 Apr; 81():101717. PubMed ID: 32222684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporally coherent cardiac motion tracking from cine MRI: Traditional registration method and modern CNN method.
    Qiao M; Wang Y; Guo Y; Huang L; Xia L; Tao Q
    Med Phys; 2020 Sep; 47(9):4189-4198. PubMed ID: 32564357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks.
    Upendra RR; Simon R; Linte CA
    Med Image Underst Anal; 2020 Jul; 1248():208-220. PubMed ID: 34278386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved tagged cardiac MRI myocardium strain analysis by leveraging cine segmentation.
    Paknezhad M; Brown MS; Marchesseau S
    Comput Methods Programs Biomed; 2020 Feb; 184():105128. PubMed ID: 31627146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression.
    Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM
    J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bidirectional registration neural network for cardiac motion tracking using cine MRI images.
    Lu J; Jin R; Wang M; Song E; Ma G
    Comput Biol Med; 2023 Jun; 160():107001. PubMed ID: 37187138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension.
    Yan W; Wang Y; van der Geest RJ; Tao Q
    Comput Biol Med; 2019 Aug; 111():103356. PubMed ID: 31323604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of cine MRI segmentation probability for uncertainty estimation using a multi-task cross-task learning architecture.
    Hasan SMK; Linte CA
    Proc SPIE Int Soc Opt Eng; 2022; 12034():. PubMed ID: 35634478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Segmentation of Cardiac Chambers from Cine Cardiac MRI Using an Adversarial Network Architecture.
    Upendra RR; Dangi S; Linte CA
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11315():. PubMed ID: 32699460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cine Cardiac MRI Slice Misalignment Correction Towards Full 3D Left Ventricle Segmentation.
    Dangi S; Linte CA; Yaniv Z
    Proc SPIE Int Soc Opt Eng; 2018 Feb; 10576():. PubMed ID: 30294064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network.
    Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG
    Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-Resolution of Cardiac MR Cine Imaging using Conditional GANs and Unsupervised Transfer Learning.
    Xia Y; Ravikumar N; Greenwood JP; Neubauer S; Petersen SE; Frangi AF
    Med Image Anal; 2021 Jul; 71():102037. PubMed ID: 33910110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CondenseUNet: A memory-efficient condensely-connected architecture for bi-ventricular blood pool and myocardium segmentation.
    Hasan SMK; Linte CA
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11315():. PubMed ID: 32699461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain measurement in the left ventricle during systole with deformable image registration.
    Phatak NS; Maas SA; Veress AI; Pack NA; Di Bella EV; Weiss JA
    Med Image Anal; 2009 Apr; 13(2):354-61. PubMed ID: 18948056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.