These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37216424)
21. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Fang X; Chen C; Liu B; Ma Z; Hu F; Li H; Gu H; Xu H Acta Biomater; 2021 Apr; 124():336-347. PubMed ID: 33578055 [TBL] [Abstract][Full Text] [Related]
22. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling. Hsu CC; Arrington JV; Tao WA Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048 [TBL] [Abstract][Full Text] [Related]
23. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure. Su Z; Zhu H; Zhang M; Wang L; He H; Jiang S; Hou FF; Li A PLoS One; 2014; 9(6):e100331. PubMed ID: 24945867 [TBL] [Abstract][Full Text] [Related]
24. Label-Free Multiple Reaction Monitoring-Mass Spectrometry for Quantifying Phosphopeptides from Extracellular Vesicles. Wei D; Sun J; Luo Z; Zhang H; Zhang G; Liu Y; Cai Y; Gu Z; Xie Z; Zhang Y Anal Chem; 2024 Sep; ():. PubMed ID: 39265084 [TBL] [Abstract][Full Text] [Related]
25. Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles. Wu X; Iliuk AB; Tao WA Adv Clin Chem; 2023; 112():119-153. PubMed ID: 36642482 [TBL] [Abstract][Full Text] [Related]
26. Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study. Chen S; Shiesh SC; Lee GB; Chen C PLoS One; 2020; 15(2):e0229610. PubMed ID: 32101583 [TBL] [Abstract][Full Text] [Related]
27. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome. Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147 [TBL] [Abstract][Full Text] [Related]
28. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
34. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen. Ball B; Krieger JR; Geddes-McAlister J Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740 [TBL] [Abstract][Full Text] [Related]
35. Immune capture and protein profiling of small extracellular vesicles from human plasma. Skoczylas Ł; Gawin M; Fochtman D; Widłak P; Whiteside TL; Pietrowska M Proteomics; 2024 Jun; 24(11):e2300180. PubMed ID: 37713108 [TBL] [Abstract][Full Text] [Related]
36. Fe Liu X; Rossio V; Thakurta SG; Flora A; Foster L; Bomgarden RD; Gygi SP; Paulo JA J Proteomics; 2022 May; 260():104561. PubMed ID: 35331916 [TBL] [Abstract][Full Text] [Related]
37. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements. Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292 [TBL] [Abstract][Full Text] [Related]
38. High throughput profiling of serum phosphoproteins/peptides using the SELDI-TOF-MS platform. Ji L; Jayachandran G; Roth JA Methods Mol Biol; 2012; 818():199-216. PubMed ID: 22083825 [TBL] [Abstract][Full Text] [Related]