These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37216424)

  • 21. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification.
    Fang X; Chen C; Liu B; Ma Z; Hu F; Li H; Gu H; Xu H
    Acta Biomater; 2021 Apr; 124():336-347. PubMed ID: 33578055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.
    Su Z; Zhu H; Zhang M; Wang L; He H; Jiang S; Hou FF; Li A
    PLoS One; 2014; 9(6):e100331. PubMed ID: 24945867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-Free Multiple Reaction Monitoring-Mass Spectrometry for Quantifying Phosphopeptides from Extracellular Vesicles.
    Wei D; Sun J; Luo Z; Zhang H; Zhang G; Liu Y; Cai Y; Gu Z; Xie Z; Zhang Y
    Anal Chem; 2024 Sep; ():. PubMed ID: 39265084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles.
    Wu X; Iliuk AB; Tao WA
    Adv Clin Chem; 2023; 112():119-153. PubMed ID: 36642482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study.
    Chen S; Shiesh SC; Lee GB; Chen C
    PLoS One; 2020; 15(2):e0229610. PubMed ID: 32101583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome.
    Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR
    Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.
    Chiasserini D; van Weering JR; Piersma SR; Pham TV; Malekzadeh A; Teunissen CE; de Wit H; Jiménez CR
    J Proteomics; 2014 Jun; 106():191-204. PubMed ID: 24769233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs.
    Alonso-Fernández S; Arribas-Díez I; Fernández-García G; González-Quiñónez N; Jensen ON; Manteca A
    J Proteomics; 2022 Oct; 269():104719. PubMed ID: 36089190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superhydrophilic nanocomposite adsorbents modified
    Xia C; Wang Q; Liang W; Wang B; Feng Q; Zhou C; Xie Y; Yan Y; Zhao L; Jiang B; Cui W; Liang H
    J Mater Chem B; 2022 Oct; 10(39):7967-7978. PubMed ID: 36124862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification.
    Chen Y; Liang X
    Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics.
    Bortel P; Piga I; Koenig C; Gerner C; Martinez-Val A; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(5):100754. PubMed ID: 38548019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen.
    Ball B; Krieger JR; Geddes-McAlister J
    Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immune capture and protein profiling of small extracellular vesicles from human plasma.
    Skoczylas Ł; Gawin M; Fochtman D; Widłak P; Whiteside TL; Pietrowska M
    Proteomics; 2024 Jun; 24(11):e2300180. PubMed ID: 37713108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe
    Liu X; Rossio V; Thakurta SG; Flora A; Foster L; Bomgarden RD; Gygi SP; Paulo JA
    J Proteomics; 2022 May; 260():104561. PubMed ID: 35331916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput profiling of serum phosphoproteins/peptides using the SELDI-TOF-MS platform.
    Ji L; Jayachandran G; Roth JA
    Methods Mol Biol; 2012; 818():199-216. PubMed ID: 22083825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoproteomic Analysis of Plant Membranes.
    Xi L; Schulze WX; Wu XN
    Methods Mol Biol; 2021; 2200():441-451. PubMed ID: 33175392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.