BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37216424)

  • 21. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.
    Su Z; Zhu H; Zhang M; Wang L; He H; Jiang S; Hou FF; Li A
    PLoS One; 2014; 9(6):e100331. PubMed ID: 24945867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles.
    Wu X; Iliuk AB; Tao WA
    Adv Clin Chem; 2023; 112():119-153. PubMed ID: 36642482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study.
    Chen S; Shiesh SC; Lee GB; Chen C
    PLoS One; 2020; 15(2):e0229610. PubMed ID: 32101583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome.
    Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR
    Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.
    Chiasserini D; van Weering JR; Piersma SR; Pham TV; Malekzadeh A; Teunissen CE; de Wit H; Jiménez CR
    J Proteomics; 2014 Jun; 106():191-204. PubMed ID: 24769233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophilic nanocomposite adsorbents modified
    Xia C; Wang Q; Liang W; Wang B; Feng Q; Zhou C; Xie Y; Yan Y; Zhao L; Jiang B; Cui W; Liang H
    J Mater Chem B; 2022 Oct; 10(39):7967-7978. PubMed ID: 36124862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs.
    Alonso-Fernández S; Arribas-Díez I; Fernández-García G; González-Quiñónez N; Jensen ON; Manteca A
    J Proteomics; 2022 Oct; 269():104719. PubMed ID: 36089190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification.
    Chen Y; Liang X
    Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen.
    Ball B; Krieger JR; Geddes-McAlister J
    Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe
    Liu X; Rossio V; Thakurta SG; Flora A; Foster L; Bomgarden RD; Gygi SP; Paulo JA
    J Proteomics; 2022 May; 260():104561. PubMed ID: 35331916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High throughput profiling of serum phosphoproteins/peptides using the SELDI-TOF-MS platform.
    Ji L; Jayachandran G; Roth JA
    Methods Mol Biol; 2012; 818():199-216. PubMed ID: 22083825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphoproteomic Analysis of Plant Membranes.
    Xi L; Schulze WX; Wu XN
    Methods Mol Biol; 2021; 2200():441-451. PubMed ID: 33175392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and heme oxygenase-1 content of extracellular vesicles in human biofluids.
    Cressatti M; Galindez JM; Juwara L; Orlovetskie N; Velly AM; Eintracht S; Liberman A; Gornitsky M; Schipper HM
    J Neurochem; 2021 Jun; 157(6):2195-2209. PubMed ID: 32880973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of multistep IMAC enrichment with high-pH reverse phase separation for in-depth phosphoproteomic profiling.
    Yue XS; Hummon AB
    J Proteome Res; 2013 Sep; 12(9):4176-86. PubMed ID: 23927012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Cerebrospinal Fluid Extracellular Vesicles by Proximity Extension Assay: A Comparative Study of Four Isolation Kits.
    Sjoqvist S; Otake K; Hirozane Y
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33321992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.