These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37216442)

  • 1. High-Throughput Single-Molecule Sensors: How Can the Signals Be Analyzed in Real Time for Achieving Real-Time Continuous Biosensing?
    Bergkamp MH; Cajigas S; van IJzendoorn LJ; Prins MWJ
    ACS Sens; 2023 Jun; 8(6):2271-2281. PubMed ID: 37216442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Small-Molecule Monitoring with a Digital Single-Particle Switch.
    Yan J; van Smeden L; Merkx M; Zijlstra P; Prins MWJ
    ACS Sens; 2020 Apr; 5(4):1168-1176. PubMed ID: 32189498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Immunosensor for Small-Molecule Monitoring in Industrial Food Processes.
    Vu C; Lin YT; Haenen SRR; Marschall J; Hummel A; Wouters SFA; Raats JMH; de Jong AM; Yan J; Prins MWJ
    Anal Chem; 2023 May; 95(20):7950-7959. PubMed ID: 37178186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Immunosensor for the Continuous Monitoring of Cortisol in Blood Plasma Sampled with Microdialysis.
    van Smeden L; Saris A; Sergelen K; de Jong AM; Yan J; Prins MWJ
    ACS Sens; 2022 Oct; 7(10):3041-3048. PubMed ID: 36255855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous biomarker monitoring with single molecule resolution by measuring free particle motion.
    Buskermolen AD; Lin YT; van Smeden L; van Haaften RB; Yan J; Sergelen K; de Jong AM; Prins MWJ
    Nat Commun; 2022 Oct; 13(1):6052. PubMed ID: 36229441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards continuous monitoring of TNF-α at picomolar concentrations using biosensing by particle motion.
    Buskermolen AD; Michielsen CMS; de Jong AM; Prins MWJ
    Biosens Bioelectron; 2024 Apr; 249():115934. PubMed ID: 38215637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Origins of Long-Term Changes in a Competitive Continuous Biosensor with Single-Molecule Resolution.
    Cajigas S; de Jong AM; Yan J; Prins MWJ
    ACS Sens; 2024 Jul; ():. PubMed ID: 38967449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time continuous monitoring of dynamic concentration profiles studied with biosensing by particle motion.
    Bergkamp MH; Cajigas S; van IJzendoorn LJ; Prins MWJ
    Lab Chip; 2023 Oct; 23(20):4600-4609. PubMed ID: 37772830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-specific washing-free immunosensor for time-resolved cortisol monitoring.
    Safarian SM; Kusov PA; Kosolobov SS; Borzenkova OV; Khakimov AV; Kotelevtsev YV; Drachev VP
    Talanta; 2021 Apr; 225():122070. PubMed ID: 33592788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing Nanoscale Electrochemistry in Small-Molecule Detection for Tackling Existing Limitations of Affinity-Based Label-Free Biosensing Applications.
    Lee DH; Lee WY; Kim J
    J Am Chem Soc; 2023 Aug; 145(32):17767-17778. PubMed ID: 37527497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An antibody-based molecular switch for continuous small-molecule biosensing.
    Thompson IAP; Saunders J; Zheng L; Hariri AA; Maganzini N; Cartwright AP; Pan J; Yee S; Dory C; Eisenstein M; Vuckovic J; Soh HT
    Sci Adv; 2023 Sep; 9(38):eadh4978. PubMed ID: 37738337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches.
    Lubken RM; de Jong AM; Prins MWJ
    Nano Lett; 2020 Apr; 20(4):2296-2302. PubMed ID: 32091908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat.
    Ganguly A; Lin KC; Muthukumar S; Prasad S
    ACS Sens; 2021 Jan; 6(1):63-72. PubMed ID: 33382251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-based immunosensor with competitive assay for cortisol detection.
    Apilux A; Rengpipat S; Suwanjang W; Chailapakul O
    J Pharm Biomed Anal; 2020 Jan; 178():112925. PubMed ID: 31669910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip manipulation and detection of magnetic particles for functional biosensors.
    Janssen XJ; van IJzendoorn LJ; Prins MW
    Biosens Bioelectron; 2008 Jan; 23(6):833-8. PubMed ID: 17942299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sandwich Immunosensor Based on Particle Motion: How Do Reactant Concentrations and Reaction Pathways Determine the Time-Dependent Response of the Sensor?
    Michielsen CMS; Buskermolen AD; de Jong AM; Prins MWJ
    ACS Sens; 2023 Nov; 8(11):4216-4225. PubMed ID: 37955441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic delay and maximal dynamic error in continuous biosensors.
    Baker DA; Gough DA
    Anal Chem; 1996 Apr; 68(8):1292-7. PubMed ID: 8651496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule Mechanochemical Sensing.
    Hu C; Tahir R; Mao H
    Acc Chem Res; 2022 May; 55(9):1214-1225. PubMed ID: 35420417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Monitoring Biosensing Mediated by Single-Molecule Plasmon-Enhanced Fluorescence in Complex Matrices.
    Lamberti V; Dolci M; Zijlstra P
    ACS Nano; 2024 Feb; 18(7):5805-13. PubMed ID: 38334312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.