BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37216476)

  • 1. Interface Adsorption versus Bulk Micellization of Surfactants: Insights from Molecular Simulations.
    Kanduč M; Stubenrauch C; Miller R; Schneck E
    J Chem Theory Comput; 2024 Feb; 20(4):1568-1578. PubMed ID: 37216476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of surfactant adsorption at liquid-liquid interface: What we may expect from soft-core models?
    Faria BF; Vishnyakov AM
    J Chem Phys; 2022 Sep; 157(9):094706. PubMed ID: 36075730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing Structural Transitions in Surfactant Adsorption Isotherms at Solid/Solution Interfaces.
    Yoon J; Ulissi ZW
    Langmuir; 2020 Jan; 36(3):819-826. PubMed ID: 31891511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions.
    Sresht V; Lewandowski EP; Blankschtein D; Jusufi A
    Langmuir; 2017 Aug; 33(33):8319-8329. PubMed ID: 28749139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New view of the adsorption of surfactants at water/alkane interfaces - Competitive and cooperative effects of surfactant and alkane molecules.
    Fainerman VB; Aksenenko EV; Kovalchuk VI; Mucic N; Javadi A; Liggieri L; Ravera F; Loglio G; Makievski AV; Schneck E; Miller R
    Adv Colloid Interface Sci; 2020 May; 279():102143. PubMed ID: 32224338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental observations on the scaling of adsorption isotherms for nonionic surfactants at a hydrophobic solid-water interface.
    Kumar N; Garoff S; Tilton RD
    Langmuir; 2004 May; 20(11):4446-51. PubMed ID: 15969151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coarse-grain molecular dynamics study of oil-water interfaces in the presence of silica nanoparticles and nonionic surfactants.
    Katiyar P; Singh JK
    J Chem Phys; 2017 May; 146(20):204702. PubMed ID: 28571351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Surfactants at Air/Water and Oil/Water Interfaces: A Comparison Based on Molecular Dynamics Simulations.
    Müller P; Bonthuis DJ; Miller R; Schneck E
    J Phys Chem B; 2021 Jan; 125(1):406-415. PubMed ID: 33400514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation-molecular-thermodynamic framework to predict the micellization behavior of mixtures of surfactants: application to binary surfactant mixtures.
    Iyer J; Mendenhall JD; Blankschtein D
    J Phys Chem B; 2013 May; 117(21):6430-42. PubMed ID: 23634888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Surfactant Concentration and Hydrophobicity on the Ordering of Water at a Silica Surface.
    Shi L; McMillan JR; Yu D; Chen X; Tucker CJ; Wasserman E; Mohler C; Chen Z
    Langmuir; 2021 Sep; 37(36):10806-10817. PubMed ID: 34455791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit- and implicit-solvent simulations of micellization in surfactant solutions.
    Jusufi A; Panagiotopoulos AZ
    Langmuir; 2015 Mar; 31(11):3283-92. PubMed ID: 25226280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ions Slow Water Dynamics at Nonionic Surfactant Interfaces.
    Baryiames CP; Ma E; Baiz CR
    J Phys Chem B; 2020 Dec; 124(52):11895-11900. PubMed ID: 33326222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental techniques to study protein-surfactant interactions: New insights into competitive adsorptions via drop subphase and interface exchange.
    Javadi A; Dowlati S; Shourni S; Miller R; Kraume M; Kopka K; Eckert K
    Adv Colloid Interface Sci; 2022 Mar; 301():102601. PubMed ID: 35114446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.
    Fainerman VB; Aksenenko EV; Krägel J; Miller R
    Adv Colloid Interface Sci; 2016 Jul; 233():200-222. PubMed ID: 26198014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic mixing in micelles of amphiphilic polyoxometalates and hexaethylene glycol monododecyl ether.
    Di A; Schmitt J; Ma K; da Silva MA; Elstone NS; Mahmoudi N; Li P; Washington A; Wang Z; Errington RJ; Edler KJ
    J Colloid Interface Sci; 2020 Oct; 578():608-618. PubMed ID: 32554143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants.
    Tian C; Feng J; Prud'homme RK
    J Colloid Interface Sci; 2020 Sep; 575():416-424. PubMed ID: 32388288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.