These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37216521)
1. Modulation of deep neural circuits with sonogenetics. Xian Q; Qiu Z; Murugappan S; Kala S; Wong KF; Li D; Li G; Jiang Y; Wu Y; Su M; Hou X; Zhu J; Guo J; Qiu W; Sun L Proc Natl Acad Sci U S A; 2023 May; 120(22):e2220575120. PubMed ID: 37216521 [TBL] [Abstract][Full Text] [Related]
2. Targeted Neurostimulation in Mouse Brains with Non-invasive Ultrasound. Qiu Z; Kala S; Guo J; Xian Q; Zhu J; Zhu T; Hou X; Wong KF; Yang M; Wang H; Sun L Cell Rep; 2020 Aug; 32(7):108033. PubMed ID: 32814040 [TBL] [Abstract][Full Text] [Related]
3. TRPV1-mediated sonogenetic neuromodulation of motor cortex in freely moving mice. Xu K; Yang Y; Hu Z; Yue Y; Gong Y; Cui J; Culver JP; Bruchas MR; Chen H J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36780694 [No Abstract] [Full Text] [Related]
4. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Ye J; Tang S; Meng L; Li X; Wen X; Chen S; Niu L; Li X; Qiu W; Hu H; Jiang M; Shang S; Shu Q; Zheng H; Duan S; Li Y Nano Lett; 2018 Jul; 18(7):4148-4155. PubMed ID: 29916253 [TBL] [Abstract][Full Text] [Related]
5. Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility. Hu Z; Yang Y; Yang L; Gong Y; Chukwu C; Ye D; Yue Y; Yuan J; Kravitz AV; Chen H Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2402200121. PubMed ID: 38885384 [TBL] [Abstract][Full Text] [Related]
6. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. Oswal A; Beudel M; Zrinzo L; Limousin P; Hariz M; Foltynie T; Litvak V; Brown P Brain; 2016 May; 139(Pt 5):1482-96. PubMed ID: 27017189 [TBL] [Abstract][Full Text] [Related]
7. Sonogenetic-Based Neuromodulation for the Amelioration of Parkinson's Disease. Fan CH; Wei KC; Chiu NH; Liao EC; Wang HC; Wu RY; Ho YJ; Chan HL; Wang TA; Huang YZ; Hsieh TH; Lin CH; Lin YC; Yeh CK Nano Lett; 2021 Jul; 21(14):5967-5976. PubMed ID: 34264082 [TBL] [Abstract][Full Text] [Related]
8. Subthalamic deep brain stimulation alters neuronal firing in canonical pain nuclei in a 6-hydroxydopamine lesioned rat model of Parkinson's disease. Gee LE; Walling I; Ramirez-Zamora A; Shin DS; Pilitsis JG Exp Neurol; 2016 Sep; 283(Pt A):298-307. PubMed ID: 27373204 [TBL] [Abstract][Full Text] [Related]
10. Response of ventral pallidal neurons to amygdala stimulation and its modulation by dopamine projections to nucleus accumbens. Yim CY; Mogenson GJ J Neurophysiol; 1983 Jul; 50(1):148-61. PubMed ID: 6875644 [TBL] [Abstract][Full Text] [Related]
11. The effect of mechanosensitive channel MscL expression in cancer cells on 3D confined migration. Heureaux-Torres J; Luker KE; Haley H; Pirone M; Lee LM; Herrera Y; Luker GD; Liu AP APL Bioeng; 2018 Sep; 2(3):032001. PubMed ID: 31069318 [TBL] [Abstract][Full Text] [Related]
12. Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity. Mathé JM; Nomikos GG; Blakeman KH; Svensson TH Neuropharmacology; 1999 Jan; 38(1):121-8. PubMed ID: 10193903 [TBL] [Abstract][Full Text] [Related]
13. Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Yim CY; Mogenson GJ Brain Res; 1982 May; 239(2):401-15. PubMed ID: 6284305 [TBL] [Abstract][Full Text] [Related]
14. High-frequency stimulation of the subthalamic nucleus restores neural and behavioral functions during reaction time task in a rat model of Parkinson's disease. Li XH; Wang JY; Gao G; Chang JY; Woodward DJ; Luo F J Neurosci Res; 2010 May; 88(7):1510-21. PubMed ID: 20025062 [TBL] [Abstract][Full Text] [Related]
15. Stimulation of Cortico-Subthalamic Projections Amplifies Resting Motor Circuit Activity and Leads to Increased Locomotion in Dopamine-Depleted Mice. Sanders TH Front Integr Neurosci; 2017; 11():24. PubMed ID: 29033800 [TBL] [Abstract][Full Text] [Related]
16. Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. Huang YS; Fan CH; Hsu N; Chiu NH; Wu CY; Chang CY; Wu BH; Hong SR; Chang YC; Yan-Tang Wu A; Guo V; Chiang YC; Hsu WC; Chen L; Pin-Kuang Lai C; Yeh CK; Lin YC Nano Lett; 2020 Feb; 20(2):1089-1100. PubMed ID: 31884787 [TBL] [Abstract][Full Text] [Related]
18. Mapping Go-No-Go performance within the subthalamic nucleus region. Hershey T; Campbell MC; Videen TO; Lugar HM; Weaver PM; Hartlein J; Karimi M; Tabbal SD; Perlmutter JS Brain; 2010 Dec; 133(Pt 12):3625-34. PubMed ID: 20855421 [TBL] [Abstract][Full Text] [Related]
19. Dorsal raphe serotonin neurons inhibit operant responding for reward via inputs to the ventral tegmental area but not the nucleus accumbens: evidence from studies combining optogenetic stimulation and serotonin reuptake inhibition. Browne CJ; Abela AR; Chu D; Li Z; Ji X; Lambe EK; Fletcher PJ Neuropsychopharmacology; 2019 Mar; 44(4):793-804. PubMed ID: 30420603 [TBL] [Abstract][Full Text] [Related]
20. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. Peris J; MacFadyen K; Smith JA; de Kloet AD; Wang L; Krause EG J Comp Neurol; 2017 Apr; 525(5):1094-1108. PubMed ID: 27615433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]