BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37216536)

  • 1. EGR4 is critical for cell-fate determination and phenotypic maintenance of geniculate ganglion neurons underlying sweet and umami taste.
    Dutta Banik D; Martin LJ; Tang T; Soboloff J; Tourtellotte WG; Pierchala BA
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2217595120. PubMed ID: 37216536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion.
    Ohman-Gault L; Huang T; Krimm R
    J Comp Neurol; 2017 Dec; 525(18):3935-3950. PubMed ID: 28856690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral Sensory Neurons of the Geniculate Ganglion That Express Tyrosine Hydroxylase Comprise a Subpopulation That Contacts Type II and Type III Taste Bud Cells.
    Tang T; Pierchala BA
    eNeuro; 2022; 9(5):. PubMed ID: 36216506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell non-autonomous requirement of p75 in the development of geniculate oral sensory neurons.
    Tang T; Donnelly CR; Shah AA; Bradley RM; Mistretta CM; Pierchala BA
    Sci Rep; 2020 Dec; 10(1):22117. PubMed ID: 33335119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TrkB expression and dependence divides gustatory neurons into three subpopulations.
    Rios-Pilier J; Krimm RF
    Neural Dev; 2019 Jan; 14(1):3. PubMed ID: 30691513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion.
    Dvoryanchikov G; Hernandez D; Roebber JK; Hill DL; Roper SD; Chaudhari N
    Nat Commun; 2017 Oct; 8(1):760. PubMed ID: 28970527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic functions for the GDNF-Ret signaling pathway in chemosensory neuron development and diversification.
    Donnelly CR; Shah AA; Mistretta CM; Bradley RM; Pierchala BA
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E516-E525. PubMed ID: 29282324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive field size, chemical and thermal responses, and fiber conduction velocity of rat chorda tympani geniculate ganglion neurons.
    Yokota Y; Bradley RM
    J Neurophysiol; 2016 Jun; 115(6):3062-72. PubMed ID: 27030734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling.
    Whitehead MC; Ganchrow JR; Ganchrow D; Yao B
    Neuroscience; 1999; 93(3):931-41. PubMed ID: 10473258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete innervation of murine taste buds by peripheral taste neurons.
    Zaidi FN; Whitehead MC
    J Neurosci; 2006 Aug; 26(32):8243-53. PubMed ID: 16899719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents.
    Patel AV; Huang T; Krimm RF
    J Comp Neurol; 2010 Aug; 518(16):3290-301. PubMed ID: 20575060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties.
    Al-Hadlaq SM; Bradley RM; MacCallum DK; Mistretta CM
    Neuroscience; 2003; 118(1):145-59. PubMed ID: 12676146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional specialization of the tongue revealed by gustatory ganglion imaging.
    Fowler BE; Ye J; Humayun S; Lee H; Macpherson LJ
    iScience; 2022 Dec; 25(12):105700. PubMed ID: 36582484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical properties and responses to neurotransmitters of petrosal and geniculate ganglion neurons innervating the tongue.
    Koga T; Bradley RM
    J Neurophysiol; 2000 Sep; 84(3):1404-13. PubMed ID: 10980013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuron/target matching between chorda tympani neurons and taste buds during postnatal rat development.
    Krimm RF; Hill DL
    J Neurobiol; 2000 Apr; 43(1):98-106. PubMed ID: 10756070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN; Krimm RF; Whitehead MC
    J Neurosci; 2007 Dec; 27(50):13875-81. PubMed ID: 18077699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood.
    Krimm RF
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Dec; 288(12):1294-302. PubMed ID: 17083122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuron/target plasticity in the peripheral gustatory system.
    Shuler MG; Krimm RF; Hill DL
    J Comp Neurol; 2004 Apr; 472(2):183-92. PubMed ID: 15048686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innervation of single fungiform taste buds during development in rat.
    Krimm RF; Hill DL
    J Comp Neurol; 1998 Aug; 398(1):13-24. PubMed ID: 9703025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
    Meng L; Ohman-Gault L; Ma L; Krimm RF
    eNeuro; 2015; 2(6):. PubMed ID: 26730405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.