BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37216589)

  • 1. Biochemical and mechanistic analysis of the cleavage of branched DNA by human ANKLE1.
    Freeman ADJ; Déclais AC; Wilson TJ; Lilley DMJ
    Nucleic Acids Res; 2023 Jun; 51(11):5743-5754. PubMed ID: 37216589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo.
    Brachner A; Braun J; Ghodgaonkar M; Castor D; Zlopasa L; Ehrlich V; Jiricny J; Gotzmann J; Knasmüller S; Foisner R
    J Cell Sci; 2012 Feb; 125(Pt 4):1048-57. PubMed ID: 22399800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hpy188I-DNA pre- and post-cleavage complexes--snapshots of the GIY-YIG nuclease mediated catalysis.
    Sokolowska M; Czapinska H; Bochtler M
    Nucleic Acids Res; 2011 Mar; 39(4):1554-64. PubMed ID: 20935048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human ANKLE1 Is a Nuclease Specific for Branched DNA.
    Song J; Freeman ADJ; Knebel A; Gartner A; Lilley DMJ
    J Mol Biol; 2020 Oct; 432(21):5825-5834. PubMed ID: 32866453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.
    Kleinstiver BP; Bérubé-Janzen W; Fernandes AD; Edgell DR
    PLoS One; 2011; 6(8):e23804. PubMed ID: 21887323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleo-cytoplasmic shuttling of the endonuclease ankyrin repeats and LEM domain-containing protein 1 (Ankle1) is mediated by canonical nuclear export- and nuclear import signals.
    Zlopasa L; Brachner A; Foisner R
    BMC Cell Biol; 2016 Jun; 17(1):23. PubMed ID: 27245214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA.
    Kleinstiver BP; Wolfs JM; Edgell DR
    Nucleic Acids Res; 2013 May; 41(10):5413-27. PubMed ID: 23558745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family.
    Gasiunas G; Sasnauskas G; Tamulaitis G; Urbanke C; Razaniene D; Siksnys V
    Nucleic Acids Res; 2008 Feb; 36(3):938-49. PubMed ID: 18086711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding, DNA recognition, and function of GIY-YIG endonucleases: crystal structures of R.Eco29kI.
    Mak AN; Lambert AR; Stoddard BL
    Structure; 2010 Oct; 18(10):1321-31. PubMed ID: 20800503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis.
    Braun J; Meixner A; Brachner A; Foisner R
    PLoS One; 2016; 11(3):e0152278. PubMed ID: 27010503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis.
    Lagerbäck P; Carlson K
    J Bacteriol; 2008 Aug; 190(16):5533-44. PubMed ID: 18539732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and mutagenic analysis of I-CreII reveals distinct but important roles for both the H-N-H and GIY-YIG motifs.
    Corina LE; Qiu W; Desai A; Herrin DL
    Nucleic Acids Res; 2009 Sep; 37(17):5810-21. PubMed ID: 19651876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily.
    Ibryashkina EM; Zakharova MV; Baskunov VB; Bogdanova ES; Nagornykh MO; Den'mukhamedov MM; Melnik BS; Kolinski A; Gront D; Feder M; Solonin AS; Bujnicki JM
    BMC Struct Biol; 2007 Jul; 7():48. PubMed ID: 17626614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holliday junction resolution by At-HIGLE: an SLX1 lineage endonuclease from Arabidopsis thaliana with a novel in-built regulatory mechanism.
    Verma P; Kumari P; Negi S; Yadav G; Gaur V
    Nucleic Acids Res; 2022 May; 50(8):4630-4646. PubMed ID: 35412622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monomeric site-specific nucleases for genome editing.
    Kleinstiver BP; Wolfs JM; Kolaczyk T; Roberts AK; Hu SX; Edgell DR
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8061-6. PubMed ID: 22566637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histidine 265 is important for covalent catalysis by vaccinia topoisomerase and is conserved in all eukaryotic type I enzymes.
    Petersen BO; Shuman S
    J Biol Chem; 1997 Feb; 272(7):3891-6. PubMed ID: 9020090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the mechanism of nuclease A, a betabeta alpha metal nuclease from Anabaena.
    Ghosh M; Meiss G; Pingoud A; London RE; Pedersen LC
    J Biol Chem; 2005 Jul; 280(30):27990-7. PubMed ID: 15897201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases.
    Huang H; Yuan HS
    J Mol Biol; 2007 May; 368(3):812-21. PubMed ID: 17368670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.
    Liu X; Liu S; Feng Y; Liu JZ; Chen Y; Pham K; Deng H; Hirschi KD; Wang X; Cheng N
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9565-70. PubMed ID: 23690600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.