These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37216754)

  • 1. A continuum damage model of fatigue and failure in whole bone.
    Dimnik JM; Haider IT; Edwards WB
    J Mech Behav Biomed Mater; 2023 Jul; 143():105907. PubMed ID: 37216754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude.
    Haider IT; Lee M; Page R; Smith D; Edwards WB
    J Biomech; 2021 Jun; 122():110434. PubMed ID: 33910082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The probability of whole-bone fatigue fracture can be accurately predicted using specimen-specific finite element analysis incorporating a stochastic failure model.
    Haider IT; Pohl AJ; Edwards WB
    J Biomech; 2022 Oct; 143():111273. PubMed ID: 36049387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and finite element analysis of tibial stress fractures using a rabbit model.
    Franklyn M; Field B
    World J Orthop; 2013; 4(4):267-78. PubMed ID: 24147262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element prediction of fatigue damage growth in cancellous bone.
    Hambli R; Frikha S; Toumi H; Tavares JM
    Comput Methods Biomech Biomed Engin; 2016; 19(5):563-70. PubMed ID: 26077722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stressed volume estimated by finite element analysis predicts the fatigue life of human cortical bone: The role of vascular canals as stress concentrators.
    Loundagin LL; Pohl AJ; Edwards WB
    Bone; 2021 Feb; 143():115647. PubMed ID: 32956853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study.
    Qasim M; Natarajan RN; An HS; Andersson GB
    J Biomech; 2012 Jul; 45(11):1934-40. PubMed ID: 22682891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone.
    Makiyama AM; Vajjhala S; Gibson LJ
    J Biomech Eng; 2002 Oct; 124(5):512-20. PubMed ID: 12405593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method.
    Matsumoto T; Ohnishi I; Bessho M; Imai K; Ohashi S; Nakamura K
    Spine (Phila Pa 1976); 2009 Jun; 34(14):1464-9. PubMed ID: 19525837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for inclusions and voids allows the prediction of tensile fatigue life of bone cement.
    Coultrup OJ; Browne M; Hunt C; Taylor M
    J Biomech Eng; 2009 May; 131(5):051007. PubMed ID: 19388777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.
    Macneil JA; Boyd SK
    Bone; 2008 Jun; 42(6):1203-13. PubMed ID: 18358799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.