BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37216756)

  • 1. An accelerated end-to-end method for solving routing problems.
    Zhu T; Shi X; Xu X; Cao J
    Neural Netw; 2023 Jul; 164():535-545. PubMed ID: 37216756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Improvement Heuristics for Solving Routing Problems.
    Wu Y; Song W; Cao Z; Zhang J; Lim A
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):5057-5069. PubMed ID: 33793405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems.
    Li K; Zhang T; Wang R; Wang Y; Han Y; Wang L
    IEEE Trans Cybern; 2022 Dec; 52(12):13142-13155. PubMed ID: 34437087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A differentiable approach to the maximum independent set problem using dataless neural networks.
    Alkhouri IR; Atia GK; Velasquez A
    Neural Netw; 2022 Nov; 155():168-176. PubMed ID: 36057182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memory-efficient Transformer-based network model for Traveling Salesman Problem.
    Yang H; Zhao M; Yuan L; Yu Y; Li Z; Gu M
    Neural Netw; 2023 Apr; 161():589-597. PubMed ID: 36822144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiobjective Combinatorial Optimization Using a Single Deep Reinforcement Learning Model.
    Wang Z; Yao S; Li G; Zhang Q
    IEEE Trans Cybern; 2024 Mar; 54(3):1984-1996. PubMed ID: 37768801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems.
    Shao Y; Lin JC; Srivastava G; Guo D; Zhang H; Yi H; Jolfaei A
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):2133-2143. PubMed ID: 34473629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning With Multiple Relational Attention for Solving Vehicle Routing Problems.
    Xu Y; Fang M; Chen L; Xu G; Du Y; Zhang C
    IEEE Trans Cybern; 2022 Oct; 52(10):11107-11120. PubMed ID: 34236983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heuristics and Learning Models for Dubins MinMax Traveling Salesman Problem.
    Nayak A; Rathinam S
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Feature Embedding Refiner for Solving Vehicle Routing Problems.
    Li J; Ma Y; Cao Z; Wu Y; Song W; Zhang J; Chee YM
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37352084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Routing Optimization Method for Software-Defined Optical Transport Networks Based on Ensembles and Reinforcement Learning.
    Chen J; Xiao W; Li X; Zheng Y; Huang X; Huang D; Wang M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving time delay fractional optimal control problems via a Gudermannian neural network and convergence results.
    Kheyrinataj F; Nazemi A; Mortezaee M
    Network; 2023; 34(1-2):122-150. PubMed ID: 36825846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Barrier Varying-Parameter Dynamic Learning Network for Solving Time-Varying Quadratic Programming Problems With Multiple Constraints.
    Zhang Z; Li Z; Yang S
    IEEE Trans Cybern; 2022 Sep; 52(9):8781-8792. PubMed ID: 33635808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid pointer networks for traveling salesman problems optimization.
    Stohy A; Abdelhakam HT; Ali S; Elhenawy M; Hassan AA; Masoud M; Glaser S; Rakotonirainy A
    PLoS One; 2021; 16(12):e0260995. PubMed ID: 34905571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of neural networks for solving traveling salesman problems.
    Gee AH; Prager RW
    IEEE Trans Neural Netw; 1995; 6(1):280-2. PubMed ID: 18263311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASP: Learn a Universal Neural Solver!
    Wang C; Yu Z; McAleer S; Yu T; Yang Y
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; 46(6):4102-4114. PubMed ID: 38198269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved Teaching-Learning-Based Optimization Algorithm with Reinforcement Learning Strategy for Solving Optimization Problems.
    Wu D; Wang S; Liu Q; Abualigah L; Jia H
    Comput Intell Neurosci; 2022; 2022():1535957. PubMed ID: 35371212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning.
    Yao S; Liu X; Zhang Y; Cui Z
    Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.