These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 37216791)

  • 1. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
    Liu Y; Yin Q; Luo Y; Huang Z; Cheng Q; Zhang W; Zhou B; Zhou Y; Ma Z
    Ultrason Sonochem; 2023 Jun; 96():106441. PubMed ID: 37216791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubbles in microfluidics: an all-purpose tool for micromanipulation.
    Li Y; Liu X; Huang Q; Ohta AT; Arai T
    Lab Chip; 2021 Mar; 21(6):1016-1035. PubMed ID: 33538756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences.
    Mohanty S; Khalil ISM; Misra S
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200621. PubMed ID: 33363443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional acoustic approaches for localized and designed micromanipulation.
    Kolesnik K; Xu M; Lee PVS; Rajagopal V; Collins DJ
    Lab Chip; 2021 Aug; 21(15):2837-2856. PubMed ID: 34268539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Enrichment and Separation of Nanoparticles via Acoustic Streaming.
    Yang Y; He M; Jin K; Chen X; Duan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2231-2234. PubMed ID: 33018451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
    Liu P; Tian Z; Hao N; Bachman H; Zhang P; Hu J; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3399-3409. PubMed ID: 32779677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Acoustic Manipulation of Living Cells and Organisms Based On 2D Array.
    Yang Y; Ma T; Zhang Q; Huang J; Hu Q; Li Y; Wang C; Zheng H
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2342-2352. PubMed ID: 35025736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface acoustic wave manipulation of bioparticles.
    Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W
    Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
    Shilton RJ; Travagliati M; Beltram F; Cecchini M
    Adv Mater; 2014 Aug; 26(29):4941-6. PubMed ID: 24677370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency flexural wave based microparticle manipulation.
    Bachman H; Gu Y; Rufo J; Yang S; Tian Z; Huang PH; Yu L; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1281-1289. PubMed ID: 32154525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing.
    Rasouli R; Villegas KM; Tabrizian M
    Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.