These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37216880)

  • 1. Ocean acidification increases inorganic carbon over organic carbon in shrimp's exoskeleton.
    Weerathunga V; Hung CC; Dupont S; Hsieh HH; Piyawardhana N; Yuan FL; Kao KJ; Huang KC; Huang WJ
    Mar Pollut Bull; 2023 Jul; 192():115050. PubMed ID: 37216880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica.
    Taylor JR; Gilleard JM; Allen MC; Deheyn DD
    Sci Rep; 2015 Jun; 5():10608. PubMed ID: 26030212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The immune-related fatty acids are responsive to CO
    Gao Y; Zheng SC; Zheng CQ; Shi YC; Xie XL; Wang KJ; Liu HP
    Dev Comp Immunol; 2018 Apr; 81():342-347. PubMed ID: 29288063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification alters properties of the exoskeleton in adult Tanner crabs,
    Dickinson GH; Bejerano S; Salvador T; Makdisi C; Patel S; Long WC; Swiney KM; Foy RJ; Steffel BV; Smith KE; Aronson RB
    J Exp Biol; 2021 Feb; 224(Pt 3):. PubMed ID: 33436365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Impedance Cytometry for Single-Cell Particulate Inorganic Carbon:Particulate Organic Carbon Measurements of Calcifying Algae.
    de Bruijn DS; Van de Waal DB; Helmsing NR; Olthuis W; van den Berg A
    Glob Chall; 2023 Mar; 7(3):2200151. PubMed ID: 36910468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions.
    deVries MS; Webb SJ; Tu J; Cory E; Morgan V; Sah RL; Deheyn DD; Taylor JR
    Sci Rep; 2016 Dec; 6():38637. PubMed ID: 27974830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater.
    Iglesias-Rodriguez MD; Jones BM; Blanco-Ameijeiras S; Greaves M; Huete-Ortega M; Lebrato M
    PLoS One; 2017; 12(7):e0181713. PubMed ID: 28750008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detrimental effect of CO2-driven seawater acidification on a crustacean brine shrimp, Artemia sinica.
    Zheng CQ; Jeswin J; Shen KL; Lablche M; Wang KJ; Liu HP
    Fish Shellfish Immunol; 2015 Mar; 43(1):181-90. PubMed ID: 25555807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ocean acidification and warming on the development and biochemical responses of juvenile shrimp Palaemon elegans (Rathke, 1837).
    Maia S; Marques SC; Dupont S; Neves M; Pinto HJ; Reis J; Leandro SM
    Mar Environ Res; 2022 Apr; 176():105580. PubMed ID: 35298941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification: the other CO2 problem.
    Doney SC; Fabry VJ; Feely RA; Kleypas JA
    Ann Rev Mar Sci; 2009; 1():169-92. PubMed ID: 21141034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas).
    Wang X; Li P; Cao X; Liu B; He S; Cao Z; Xing S; Liu L; Li ZH
    Environ Pollut; 2022 Nov; 313():120161. PubMed ID: 36100119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-base balance in the hæmolymph of European abalone (Haliotis tuberculata) exposed to CO
    Auzoux-Bordenave S; Chevret S; Badou A; Martin S; Di Giglio S; Dubois P
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Sep; 259():110996. PubMed ID: 34058370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and biogeochemical modulation of ocean acidification in the central North Pacific.
    Dore JE; Lukas R; Sadler DW; Church MJ; Karl DM
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12235-40. PubMed ID: 19666624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural and Anthropogenic Drivers of Acidification in Large Estuaries.
    Cai WJ; Feely RA; Testa JM; Li M; Evans W; Alin SR; Xu YY; Pelletier G; Ahmed A; Greeley DJ; Newton JA; Bednaršek N
    Ann Rev Mar Sci; 2021 Jan; 13():23-55. PubMed ID: 32956015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid times in physiology: A systematic review of the effects of ocean acidification on calcifying invertebrates.
    Martins Medeiros IP; Souza MM
    Environ Res; 2023 Aug; 231(Pt 1):116019. PubMed ID: 37119846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar controls on calcification under ocean acidification across unrelated coral reef taxa.
    Comeau S; Cornwall CE; DeCarlo TM; Krieger E; McCulloch MT
    Glob Chang Biol; 2018 Oct; 24(10):4857-4868. PubMed ID: 29957854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent constraint on Arctic Ocean acidification in the twenty-first century.
    Terhaar J; Kwiatkowski L; Bopp L
    Nature; 2020 Jun; 582(7812):379-383. PubMed ID: 32555488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ocean acidification on the ballast of surface aggregates sinking through the twilight zone.
    de Jesus Mendes PA; Thomsen L
    PLoS One; 2012; 7(12):e50865. PubMed ID: 23272075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow.
    Koweek DA; Zimmerman RC; Hewett KM; Gaylord B; Giddings SN; Nickols KJ; Ruesink JL; Stachowicz JJ; Takeshita Y; Caldeira K
    Ecol Appl; 2018 Oct; 28(7):1694-1714. PubMed ID: 30063809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.