These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37216900)

  • 1. Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.
    Fan H; Yan W; Wang L; Liu J; Bin Y; Xia J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PrMFTP: Multi-functional therapeutic peptides prediction based on multi-head self-attention mechanism and class weight optimization.
    Yan W; Tang W; Wang L; Bin Y; Xia J
    PLoS Comput Biol; 2022 Sep; 18(9):e1010511. PubMed ID: 36094961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
    Fang Y; Luo M; Ren Z; Wei L; Wei DQ
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39038935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMBER: multi-label prediction of kinase-substrate phosphorylation events through deep learning.
    Kirchoff KE; Gomez SM
    Bioinformatics; 2022 Apr; 38(8):2119-2126. PubMed ID: 35157015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MMSMAPlus: a multi-view multi-scale multi-attention embedding model for protein function prediction.
    Wang Z; Deng Z; Zhang W; Lou Q; Choi KS; Wei Z; Wang L; Wu J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37258453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional Neural Networks for ATC Classification.
    Lumini A; Nanni L
    Curr Pharm Des; 2018; 24(34):4007-4012. PubMed ID: 30417778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images.
    Wang F; Wei L
    Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.
    Zhuang J; Gao W; Su R
    J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding.
    Zeng M; Wu Y; Lu C; Zhang F; Wu FX; Li M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks.
    Sureyya Rifaioglu A; Doğan T; Jesus Martin M; Cetin-Atalay R; Atalay V
    Sci Rep; 2019 May; 9(1):7344. PubMed ID: 31089211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.