These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37216914)

  • 21. Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis.
    Bao J; Chang C; Zhang Q; Saykin AJ; Shen L; Long Q;
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36882008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prioritization of candidate metabolites for postmenopausal osteoporosis using multi-omics composite network.
    Zhang C; Wang Y; Zhang CL; Wu HR
    Exp Ther Med; 2019 Apr; 17(4):3155-3161. PubMed ID: 30936988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive gene identification for cancer subtyping based on multi-omics clustering.
    Ye X; Shi T; Cui Y; Sakurai T
    Methods; 2023 Mar; 211():61-67. PubMed ID: 36804215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the key metabolites and related genes network modules highly associated with the nutrients and taste components among different Pepino (Solanum muricatum) cultivars.
    Yang S; Sun Z; Zhang G; Wang L; Zhong Q
    Food Res Int; 2023 Jan; 163():112287. PubMed ID: 36596193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathformer: a biological pathway informed transformer for disease diagnosis and prognosis using multi-omics data.
    Liu X; Tao Y; Cai Z; Bao P; Ma H; Li K; Li M; Zhu Y; Lu ZJ
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38741230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets.
    Ye Q; Guo NL
    Cells; 2022 Dec; 12(1):. PubMed ID: 36611894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery.
    Wei T; Fa B; Luo C; Johnston L; Zhang Y; Yu Z
    Front Genet; 2020; 11():613033. PubMed ID: 33488678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Subspace Mutual Learning for cancer subtypes prediction.
    Yang B; Xin TT; Pang SM; Wang M; Wang YJ
    Bioinformatics; 2021 Nov; 37(21):3715-3722. PubMed ID: 34478501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian linear mixed model with multiple random effects for prediction analysis on high-dimensional multi-omics data.
    Hai Y; Ma J; Yang K; Wen Y
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37882747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DRAGON: Determining Regulatory Associations using Graphical models on multi-Omic Networks.
    Shutta KH; Weighill D; Burkholz R; Guebila MB; DeMeo DL; Zacharias HU; Quackenbush J; Altenbuchinger M
    Nucleic Acids Res; 2023 Feb; 51(3):e15. PubMed ID: 36533448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data.
    Zuo C; Dai H; Chen L
    Bioinformatics; 2021 Nov; 37(22):4091-4099. PubMed ID: 34028557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using high-throughput multi-omics data to investigate structural balance in elementary gene regulatory network motifs.
    Zenere A; Rundquist O; Gustafsson M; Altafini C
    Bioinformatics; 2021 Dec; 38(1):173-178. PubMed ID: 34383882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using association signal annotations to boost similarity network fusion.
    Ruan P; Wang Y; Shen R; Wang S
    Bioinformatics; 2019 Oct; 35(19):3718-3726. PubMed ID: 30863842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsupervised construction of gene regulatory network based on single-cell multi-omics data of colorectal cancer.
    Cui L; Li H; Bian J; Wang G; Liang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36723605
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.