These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37216924)

  • 21. Hexagonal Boron Nitride for Surface Passivation of Two-Dimensional van der Waals Heterojunction Solar Cells.
    Cho AJ; Kwon JY
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39765-39771. PubMed ID: 31577117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo
    Zhang M; Pan J; Zhou W; Li A; Ouyang F
    J Phys Condens Matter; 2019 Dec; 31(50):505302. PubMed ID: 31469091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions.
    Jiang Y; He A; Zhao R; Chen Y; Liu G; Lu H; Zhang J; Zhang Q; Wang Z; Zhao C; Long M; Hu W; Wang L; Qi Y; Gao J; Wu Q; Ge X; Ning J; Wee ATS; Qiu CW
    Phys Rev Lett; 2021 Nov; 127(21):217401. PubMed ID: 34860083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Self-Driven Photodetectors Featuring a Mixed-Dimensional van der Waals Heterojunction Formed from a CdS Nanowire and a MoTe
    Lu MY; Chang YT; Chen HJ
    Small; 2018 Oct; 14(40):e1802302. PubMed ID: 30198180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional quantum dots for highly efficient heterojunction solar cells.
    Abdelsalam H; Atta MM; Osman W; Zhang Q
    J Colloid Interface Sci; 2021 Dec; 603():48-57. PubMed ID: 34186410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The high power conversion efficiency of a two-dimensional GeSe/AsP van der Waals heterostructure for solar energy cells.
    Liu HY; Yang CL; Wang MS; Ma XG
    Phys Chem Chem Phys; 2021 Mar; 23(10):6042-6050. PubMed ID: 33683239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. III-VI van der Waals heterostructures for sustainable energy related applications.
    Chen J; He X; Sa B; Zhou J; Xu C; Wen C; Sun Z
    Nanoscale; 2019 Mar; 11(13):6431-6444. PubMed ID: 30888370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-Induced Electric Field Enhanced Self-Powered Photodetector Based on Van der Waals Heterojunctions.
    Shang H; Gao F; Dai M; Hu Y; Wang S; Xu B; Wang P; Gao B; Zhang J; Hu P
    Small Methods; 2023 Jan; 7(1):e2200966. PubMed ID: 36440646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of van der Waals interaction in enhancing the photon absorption capability of the MoS
    Saini H; Jyothirmai MV; Waghmare UV; Thapa R
    Phys Chem Chem Phys; 2020 Feb; 22(5):2775-2782. PubMed ID: 31951228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photogenerated-Carrier Separation and Transfer in Two-Dimensional Janus Transition Metal Dichalcogenides and Graphene van der Waals Sandwich Heterojunction Photovoltaic Cells.
    Liu X; Gao P; Hu W; Yang J
    J Phys Chem Lett; 2020 May; 11(10):4070-4079. PubMed ID: 32354217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces.
    Miao J; Liu X; Jo K; He K; Saxena R; Song B; Zhang H; He J; Han MG; Hu W; Jariwala D
    Nano Lett; 2020 Apr; 20(4):2907-2915. PubMed ID: 32196351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of 1D Te/2D ReS
    Tao JJ; Jiang J; Zhao SN; Zhang Y; Li XX; Fang X; Wang P; Hu W; Lee YH; Lu HL; Zhang DW
    ACS Nano; 2021 Feb; 15(2):3241-3250. PubMed ID: 33544595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and optical properties of two-dimensional GaN/ZnO heterojunction tuned by different stacking configurations.
    Xia S; Diao Y; Kan C
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):913-921. PubMed ID: 34571312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carrier Recirculation Induced High-Gain Photodetector Based on van der Waals Heterojunction.
    Shang H; Hu Y; Gao F; Dai M; Zhang S; Wang S; Ouyang D; Li X; Song X; Gao B; Zhai T; Hu P
    ACS Nano; 2022 Dec; 16(12):21293-21302. PubMed ID: 36468786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dicarbon nitride and Janus transition metal chalcogenides van der Waals heterojunctions for photocatalytic water splitting.
    Yan S; Chen W; Xiong W; Yang L; Luo R; Wang F
    J Phys Condens Matter; 2022 Nov; 51(1):. PubMed ID: 36317286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Throughput Computational Screening of Vertical 2D van der Waals Heterostructures for High-efficiency Excitonic Solar Cells.
    Linghu J; Yang T; Luo Y; Yang M; Zhou J; Shen L; Feng YP
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32142-32150. PubMed ID: 30178655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Van Der Waals Heterojunction Photodiodes Enabling Dipole-Induced Polarity Switching.
    Shin J; Yang S; Eo JS; Jeon T; Lee J; Lee CH; Wang G
    Small Methods; 2022 Oct; 6(10):e2200646. PubMed ID: 36055777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large Tunneling Magnetoresistance in van der Waals Ferromagnet/Semiconductor Heterojunctions.
    Zhu W; Lin H; Yan F; Hu C; Wang Z; Zhao L; Deng Y; Kudrynskyi ZR; Zhou T; Kovalyuk ZD; Zheng Y; Patanè A; Žutić I; Li S; Zheng H; Wang K
    Adv Mater; 2021 Dec; 33(51):e2104658. PubMed ID: 34642998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.
    Li C; Cao Q; Wang F; Xiao Y; Li Y; Delaunay JJ; Zhu H
    Chem Soc Rev; 2018 Jul; 47(13):4981-5037. PubMed ID: 29736528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultraviolet Wavelength-Dependent Optoelectronic Properties in Two-Dimensional NbSe
    Son SB; Kim Y; Kim A; Cho B; Hong WK
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41537-41545. PubMed ID: 29110451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.