These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37216992)

  • 1. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature.
    Di Nunno F; Zhu S; Ptak M; Sojka M; Granata F
    Sci Total Environ; 2023 Sep; 890():164323. PubMed ID: 37216992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining physical-based model and machine learning to forecast chlorophyll-a concentration in freshwater lakes.
    Chen C; Chen Q; Yao S; He M; Zhang J; Li G; Lin Y
    Sci Total Environ; 2024 Jan; 907():168097. PubMed ID: 37879485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning models development for accurate multi-months ahead drought forecasting: Case study of the Great Lakes, North America.
    Hameed MM; Razali SFM; Mohtar WHMW; Rahman NA; Yaseen ZM
    PLoS One; 2023; 18(10):e0290891. PubMed ID: 37906556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One to twelve-month-ahead forecasting of MODIS-derived Qinghai Lake area, using neuro-fuzzy system hybridized by firefly optimization.
    Aghelpour P; Bahrami-Pichaghchi H; Varshavian V; Norooz-Valashedi R
    Environ Sci Pollut Res Int; 2024 Mar; 31(15):22900-22916. PubMed ID: 38418789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using near-term forecasts and uncertainty partitioning to inform prediction of oligotrophic lake cyanobacterial density.
    Lofton ME; Brentrup JA; Beck WS; Zwart JA; Bhattacharya R; Brighenti LS; Burnet SH; McCullough IM; Steele BG; Carey CC; Cottingham KL; Dietze MC; Ewing HA; Weathers KC; LaDeau SL
    Ecol Appl; 2022 Jul; 32(5):e2590. PubMed ID: 35343013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva.
    Derot J; Yajima H; Jacquet S
    Harmful Algae; 2020 Nov; 99():101906. PubMed ID: 33218452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Historical and projected response of Southeast Asian lakes surface water temperature to warming climate.
    Virdis SGP; Kongwarakom S; Juneng L; Padedda BM; Shrestha S
    Environ Res; 2024 Apr; 247():118412. PubMed ID: 38316380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Response of Surface Water Temperature in Urban Lakes under Different Climate Scenarios-A Case Study in Dianchi Lake, China.
    Duan H; Shang C; Yang K; Luo Y
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turbidity prediction of lake-type raw water using random forest model based on meteorological data: A case study of Tai lake, China.
    Zhang Y; Yao X; Wu Q; Huang Y; Zhou Z; Yang J; Liu X
    J Environ Manage; 2021 Jul; 290():112657. PubMed ID: 33892240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian model averaging by combining deep learning models to improve lake water level prediction.
    Li G; Liu Z; Zhang J; Han H; Shu Z
    Sci Total Environ; 2024 Jan; 906():167718. PubMed ID: 37832688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?
    Xiong J; Lin C; Cao Z; Hu M; Xue K; Chen X; Ma R
    Water Res; 2022 May; 215():118213. PubMed ID: 35247602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lake water-level fluctuation forecasting using machine learning models: a systematic review.
    Zhu S; Lu H; Ptak M; Dai J; Ji Q
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):44807-44819. PubMed ID: 32978734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting water temperature in lakes and reservoirs using seasonal climate prediction.
    Mercado-Bettín D; Clayer F; Shikhani M; Moore TN; Frías MD; Jackson-Blake L; Sample J; Iturbide M; Herrera S; French AS; Norling MD; Rinke K; Marcé R
    Water Res; 2021 Aug; 201():117286. PubMed ID: 34102597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time Series Forecasting of Univariate Agrometeorological Data: A Comparative Performance Evaluation via One-Step and Multi-Step Ahead Forecasting Strategies.
    Suradhaniwar S; Kar S; Durbha SS; Jagarlapudi A
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum lake surface water temperatures changing characteristics under climate change.
    Yang J; Yang K; Zhang Y; Luo Y; Shang C
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2547-2554. PubMed ID: 34370202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term solar radiation forecasting using machine learning models under different sky conditions: evaluations and comparisons.
    Belmahdi B; Bouardi AE
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):966-981. PubMed ID: 38030838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of dissolved oxygen forecast model using hybrid machine learning algorithm with hydro-meteorological variables.
    Ahmed AAM; Jui SJJ; Chowdhury MAI; Ahmed O; Sutradha A
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):7851-7873. PubMed ID: 36045185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave.
    Zhu S; Di Nunno F; Ptak M; Sojka M; Granata F
    Sci Total Environ; 2023 Dec; 905():167121. PubMed ID: 37717777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the temporal and spatial distribution and threats of bisphenol A in temperate lakes using machine learning models.
    Wang Y; Zhang X; Guo F; Li A; Fan J
    Ecotoxicol Environ Saf; 2024 Jan; 269():115750. PubMed ID: 38043415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia.
    Zhao N; Charland K; Carabali M; Nsoesie EO; Maheu-Giroux M; Rees E; Yuan M; Garcia Balaguera C; Jaramillo Ramirez G; Zinszer K
    PLoS Negl Trop Dis; 2020 Sep; 14(9):e0008056. PubMed ID: 32970674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.