These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37217044)
1. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Singh AK; Iqbal HMN; Cardullo N; Muccilli V; Fernández-Lucas J; Schmidt JE; Jesionowski T; Bilal M Int J Biol Macromol; 2023 Jul; 242(Pt 3):124968. PubMed ID: 37217044 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Singh AK; Bilal M; Iqbal HMN; Meyer AS; Raj A Sci Total Environ; 2021 Jul; 777():145988. PubMed ID: 33684751 [TBL] [Abstract][Full Text] [Related]
3. Insights into lignin degradation and its potential industrial applications. Abdel-Hamid AM; Solbiati JO; Cann IK Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151 [TBL] [Abstract][Full Text] [Related]
4. Assessing chemical hazard and unraveling binding affinity of priority pollutants to lignin modifying enzymes for environmental remediation. Singh AK; Bilal M; Jesionowski T; Iqbal HMN Chemosphere; 2023 Feb; 313():137546. PubMed ID: 36529171 [TBL] [Abstract][Full Text] [Related]
5. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Wang X; Yao B; Su X Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373305 [TBL] [Abstract][Full Text] [Related]
6. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants - A review. Bilal M; Asgher M; Parra-Saldivar R; Hu H; Wang W; Zhang X; Iqbal HMN Sci Total Environ; 2017 Jan; 576():646-659. PubMed ID: 27810752 [TBL] [Abstract][Full Text] [Related]
7. Microbial lignin peroxidases: Applications, production challenges and future perspectives. Biko ODV; Viljoen-Bloom M; van Zyl WH Enzyme Microb Technol; 2020 Nov; 141():109669. PubMed ID: 33051019 [TBL] [Abstract][Full Text] [Related]
8. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
9. Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). Deng K; Zeng J; Cheng G; Gao J; Sale KL; Simmons BA; Singh AK; Adams PD; Northen TR Biotechnol Biofuels; 2018; 11():266. PubMed ID: 30275906 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation of lignocellulosic materials into value-added products-A review. Bilal M; Asgher M; Iqbal HM; Hu H; Zhang X Int J Biol Macromol; 2017 May; 98():447-458. PubMed ID: 28163129 [TBL] [Abstract][Full Text] [Related]
11. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. Martani F; Beltrametti F; Porro D; Branduardi P; Lotti M FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655193 [TBL] [Abstract][Full Text] [Related]
12. Co-cultured production of lignin-modifying enzymes with white-rot fungi. Qi-He C; Krügener S; Hirth T; Rupp S; Zibek S Appl Biochem Biotechnol; 2011 Sep; 165(2):700-18. PubMed ID: 21647688 [TBL] [Abstract][Full Text] [Related]
13. Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degradation. Catucci G; Valetti F; Sadeghi SJ; Gilardi G Biotechnol Appl Biochem; 2020 Sep; 67(5):751-759. PubMed ID: 32860433 [TBL] [Abstract][Full Text] [Related]
14. Characterization of white rot fungi from wood decayed for lignin degradation. Nurul-Aliyaa YA; Awang NA; Mohd MH Lett Appl Microbiol; 2023 Oct; 76(10):. PubMed ID: 37777838 [TBL] [Abstract][Full Text] [Related]
15. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Singh AK; Bilal M; Iqbal HMN; Raj A Int J Biol Macromol; 2021 Apr; 177():58-82. PubMed ID: 33577817 [TBL] [Abstract][Full Text] [Related]
16. Emerging biotechnological potentials of DyP-type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007-2019). Falade AO; Ekundayo TC Lett Appl Microbiol; 2021 Jan; 72(1):13-23. PubMed ID: 32974921 [TBL] [Abstract][Full Text] [Related]
17. Lignin-modifying enzymes of flavodon flavus, a basidiomycete isolated from a coastal marine environment. Raghukumar C; D'Souza TM; Thorn RG; Reddy CA Appl Environ Microbiol; 1999 May; 65(5):2103-11. PubMed ID: 10224007 [TBL] [Abstract][Full Text] [Related]
18. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin. Saikia K; Vishnu D; Rathankumar AK; Palanisamy Athiyaman B; Batista-García RA; Folch-Mallol JL; Cabana H; Kumar VV J Air Waste Manag Assoc; 2020 Dec; 70(12):1252-1259. PubMed ID: 32701040 [TBL] [Abstract][Full Text] [Related]
19. Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Qin X; Xin Y; Su X; Wang X; Wang Y; Zhang J; Tu T; Yao B; Luo H; Huang H Toxins (Basel); 2021 Aug; 13(9):. PubMed ID: 34564606 [TBL] [Abstract][Full Text] [Related]