BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37217139)

  • 1. Atraumatic access to human glioblastoma in a xenograft animal model by cerebral open flow microperfusion.
    Altendorfer-Kroath T; Asslaber M; Hummer J; Boulgaropoulos B; Prietl B; Pieber TR; Bernhart E; Birngruber T
    J Neurosci Methods; 2023 Jun; 393():109893. PubMed ID: 37217139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral open flow microperfusion: a new in vivo technique for continuous measurement of substance transport across the intact blood-brain barrier.
    Birngruber T; Ghosh A; Perez-Yarza V; Kroath T; Ratzer M; Pieber TR; Sinner F
    Clin Exp Pharmacol Physiol; 2013 Dec; 40(12):864-71. PubMed ID: 24256164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo monitoring of brain pharmacokinetics and pharmacodynamics with cerebral open flow microperfusion.
    Altendorfer-Kroath T; Hummer J; Birngruber T
    Biopharm Drug Dispos; 2023 Feb; 44(1):84-93. PubMed ID: 36650922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral Open Flow Microperfusion to Monitor Drug Transport Across the Blood-Brain Barrier.
    Hummer J; Altendorfer-Kroath T; Birngruber T
    Curr Protoc Pharmacol; 2019 Jun; 85(1):e60. PubMed ID: 31145555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of cerebral open flow microperfusion and microdialysis to quantify a brain-penetrating nanobody in mice.
    Custers ML; Wouters Y; Jaspers T; De Bundel D; Dewilde M; Van Eeckhaut A; Smolders I
    Anal Chim Acta; 2021 Sep; 1178():338803. PubMed ID: 34482878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of cerebral Open Flow Microperfusion and Microdialysis when sampling small lipophilic and small hydrophilic substances.
    Altendorfer-Kroath T; Schimek D; Eberl A; Rauter G; Ratzer M; Raml R; Sinner F; Birngruber T
    J Neurosci Methods; 2019 Jan; 311():394-401. PubMed ID: 30266621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term implanted cOFM probe causes minimal tissue reaction in the brain.
    Birngruber T; Ghosh A; Hochmeister S; Asslaber M; Kroath T; Pieber TR; Sinner F
    PLoS One; 2014; 9(3):e90221. PubMed ID: 24621608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral open flow microperfusion (cOFM) an innovative interface to brain tissue.
    Birngruber T; Sinner F
    Drug Discov Today Technol; 2016 Jun; 20():19-25. PubMed ID: 27986219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of blood-brain barrier function and the neuroinflammatory response in the rat brain by using cerebral open flow microperfusion (cOFM).
    Ghosh A; Birngruber T; Sattler W; Kroath T; Ratzer M; Sinner F; Pieber TR
    PLoS One; 2014; 9(5):e98143. PubMed ID: 24852285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,(®)/Doxil(®)--a cerebral open flow microperfusion pilot study.
    Birngruber T; Raml R; Gladdines W; Gatschelhofer C; Gander E; Ghosh A; Kroath T; Gaillard PJ; Pieber TR; Sinner F
    J Pharm Sci; 2014 Jul; 103(7):1945-1948. PubMed ID: 24801480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the Therapeutic Antibody Ocrelizumab in Mouse Brain Interstitial Fluid Using Cerebral Open Flow Microperfusion and Simultaneous Monitoring of the Blood-Brain Barrier Integrity.
    Altendorfer-Kroath T; Hummer J; Kollmann D; Boulgaropoulos B; Raml R; Birngruber T
    Pharmaceutics; 2023 Jul; 15(7):. PubMed ID: 37514066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.
    Irtenkauf SM; Sobiechowski S; Hasselbach LA; Nelson KK; Transou AD; Carlton ET; Mikkelsen T; deCarvalho AC
    Comp Med; 2017 Aug; 67(4):300-314. PubMed ID: 28830577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.
    Miura FK; Alves MJ; Rocha MC; da Silva R; Oba-Shinjo SM; Marie SK
    Clinics (Sao Paulo); 2010 Mar; 65(3):305-9. PubMed ID: 20360922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal.
    Selek L; Seigneuret E; Nugue G; Wion D; Nissou MF; Salon C; Seurin MJ; Carozzo C; Ponce F; Roger T; Berger F
    J Neurosci Methods; 2014 Jan; 221():159-65. PubMed ID: 24126047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracranial glioma xenograft model rapidly reestablishes blood-brain barrier integrity for longitudinal imaging of tumor progression using fluorescence molecular tomography and contrast agents.
    Habimana-Griffin L; Ye D; Carpenter J; Prior J; Sudlow G; Marsala L; Mixdorf M; Rubin J; Chen H; Achilefu S
    J Biomed Opt; 2020 Feb; 25(2):1-13. PubMed ID: 32112540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Orthotopic Patient-Derived Xenograft Models of Pediatric Intracranial Tumors.
    Upton DH; Ziegler DS; Tsoli M
    Methods Mol Biol; 2024; 2806():75-90. PubMed ID: 38676797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of the MDM2 Inhibitor SAR405838 in Glioblastoma Is Limited by Poor Distribution Across the Blood-Brain Barrier.
    Kim M; Ma DJ; Calligaris D; Zhang S; Feathers RW; Vaubel RA; Meaux I; Mladek AC; Parrish KE; Jin F; Barriere C; Debussche L; Watters J; Tian S; Decker PA; Eckel-Passow JE; Kitange GJ; Johnson AJ; Parney IF; Anastasiadis PZ; Agar NYR; Elmquist WF; Sarkaria JN
    Mol Cancer Ther; 2018 Sep; 17(9):1893-1901. PubMed ID: 29970480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of anti-angiogenic agent F16 for targeting glioblastoma xenograft tumors.
    Algahtani M; Natarajan U; Alhazzani K; Alaseem A; Rathinavelu A
    Cancer Genet; 2022 Jun; 264-265():71-89. PubMed ID: 35568001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of initial tumor microenvironment on imaging phenotype.
    Nagaraja TN; deCarvalho AC; Brown SL; Griffith B; Farmer K; Irtenkauf S; Hasselbach L; Mukherjee A; Bartlett S; Valadie OG; Cabral G; Knight RA; Lee IY; Divine GW; Ewing JR
    Cancer Treat Res Commun; 2021; 27():100315. PubMed ID: 33571801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporary blood-brain barrier disruption by low intensity pulsed ultrasound increases carboplatin delivery and efficacy in preclinical models of glioblastoma.
    Dréan A; Lemaire N; Bouchoux G; Goldwirt L; Canney M; Goli L; Bouzidi A; Schmitt C; Guehennec J; Verreault M; Sanson M; Delattre JY; Mokhtari K; Sottilini F; Carpentier A; Idbaih A
    J Neurooncol; 2019 Aug; 144(1):33-41. PubMed ID: 31197598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.