These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37217500)

  • 21. Towards superlubricity in nanostructured surfaces: the role of van der Waals forces.
    Echeverrigaray FG; S de Mello SR; Leidens LM; H Maia da Costa ME; Alvarez F; Burgo TAL; Michels AF; Figueroa CA
    Phys Chem Chem Phys; 2018 Aug; 20(34):21949-21959. PubMed ID: 30091772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a superlubricity nanometer interface by Raman spectroscopy.
    Shi Y; Yang X; Liu B; Dong H; Zheng Q
    Nanotechnology; 2016 Aug; 27(32):325701. PubMed ID: 27348089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable, Wide-Temperature, and Macroscale Superlubricity Enabled by Nanoscale Van Der Waals Heterojunction-to-Homojunction Transformation.
    Yang X; Li R; Wang Y; Zhang J
    Adv Mater; 2023 Sep; 35(39):e2303580. PubMed ID: 37354130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water.
    Li J; Cao W; Li J; Ma M
    J Colloid Interface Sci; 2021 Aug; 596():44-53. PubMed ID: 33826969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust superlubricity by strain engineering.
    Wang K; Ouyang W; Cao W; Ma M; Zheng Q
    Nanoscale; 2019 Jan; 11(5):2186-2193. PubMed ID: 30671572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genesis of Superlow Friction in Strengthening Si-DLC/PLC Nanostructured Multilayer Films for Robust Superlubricity at Ultrahigh Contact Stress.
    Deng W; Wang Y; Yu Q; Chen X; Huang P; Yu X; Qi W; Li X; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51564-51578. PubMed ID: 36322023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Edge-enhanced super microgenerator based on a two-dimensional Schottky junction.
    Yu Z; Xiao Y; Huang X; Liu C; He Y; Ma M
    J Phys Condens Matter; 2024 Jun; 36(37):. PubMed ID: 38843804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Filtering Robust Graphite without Incommensurate Interfaces by Electrical Technique.
    Chen W; Wu T; Wang Y; Wang Y; Ma M; Zheng Q; Wu Z
    ACS Appl Mater Interfaces; 2023 Dec; 15(49):57791-8. PubMed ID: 38047454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation and Characterization of Submillimeter Shearing Contacts in Graphite by the Micro-Dome Technique.
    Yang D; Qu C; Gongyang Y; Zheng Q
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44563-44571. PubMed ID: 37672630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust structural superlubricity under gigapascal pressures.
    Sun T; Gao E; Jia X; Bian J; Wang Z; Ma M; Zheng Q; Xu Z
    Nat Commun; 2024 Jul; 15(1):5952. PubMed ID: 39009569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully automatic transfer and measurement system for structural superlubric materials.
    Chen L; Lin C; Shi D; Huang X; Zheng Q; Nie J; Ma M
    Nat Commun; 2023 Oct; 14(1):6323. PubMed ID: 37816725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer.
    Sha TD; Pang H; Fang L; Liu HX; Chen XC; Liu DM; Luo JB
    Nanotechnology; 2020 May; 31(20):205703. PubMed ID: 31995540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroscale Superlubricity on Nanoscale Graphene MoirĂ© Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Load-induced dynamical transitions at graphene interfaces.
    Peng D; Wu Z; Shi D; Qu C; Jiang H; Song Y; Ma M; Aeppli G; Urbakh M; Zheng Q
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12618-12623. PubMed ID: 32457159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrahigh Critical Current Density across Sliding Electrical Contacts in Structural Superlubric State.
    Wu T; Chen W; Wangye L; Wang Y; Wu Z; Ma M; Zheng Q
    Phys Rev Lett; 2024 Mar; 132(9):096201. PubMed ID: 38489654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rotational Instability in Superlubric Joints.
    Qu C; Shi S; Ma M; Zheng Q
    Phys Rev Lett; 2019 Jun; 122(24):246101. PubMed ID: 31322388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.