BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37217558)

  • 1. ACCT is a fast and accessible automatic cell counting tool using machine learning for 2D image segmentation.
    Kataras TJ; Jang TJ; Koury J; Singh H; Fok D; Kaul M
    Sci Rep; 2023 May; 13(1):8213. PubMed ID: 37217558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
    Lojk J; Čibej U; Karlaš D; Šajn L; Pavlin M
    J Microsc; 2015 Oct; 260(1):107-16. PubMed ID: 26098834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.
    Arganda-Carreras I; Kaynig V; Rueden C; Eliceiri KW; Schindelin J; Cardona A; Sebastian Seung H
    Bioinformatics; 2017 Aug; 33(15):2424-2426. PubMed ID: 28369169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex.
    Ahmady Phoulady H; Goldgof D; Hall LO; Mouton PR
    J Chem Neuroanat; 2019 Jul; 98():1-7. PubMed ID: 30836126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear-labeling index analysis (NLIA), a software package used to perform accurate automation of cell nuclear-labeling index analysis on immunohistochemically stained rat liver samples.
    Xu YH; Sattler GL; Edwards H; Pitot HC
    Comput Methods Programs Biomed; 2000 Aug; 63(1):55-70. PubMed ID: 10927155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Comparison of Five Methods for
    Kurnia KA; Sampurna BP; Audira G; Juniardi S; Vasquez RD; Roldan MJM; Tsao CC; Hsiao CD
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cell Segmentation/Tracking Tool Based on Machine Learning.
    Deter HS; Dies M; Cameron CC; Butzin NC; Buceta J
    Methods Mol Biol; 2019; 2040():399-422. PubMed ID: 31432490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying changes in LN-18 glial cell morphology: a supervised machine learning approach to analyzing cell microscopy data via FIJI and WEKA.
    Mbiki S; McClendon J; Alexander-Bryant A; Gilmore J
    Med Biol Eng Comput; 2020 Jul; 58(7):1419-1430. PubMed ID: 32314170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic image analysis approach to quantify stained cell cultures.
    Glory E; Derocle G; Ollivier N; Meas-Yedid V; Stamon G; Pinset C; Olivo-Marin JC
    Cell Mol Biol (Noisy-le-grand); 2007 Apr; 53(2):44-50. PubMed ID: 17531139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Unsupervised Approach for Segmenting and Counting Cells in High-Throughput Microscopy Image Sets.
    Riccio D; Brancati N; Frucci M; Gragnaniello D
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):437-448. PubMed ID: 29994162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic image annotation for fluorescent cell nuclei segmentation.
    Englbrecht F; Ruider IE; Bausch AR
    PLoS One; 2021; 16(4):e0250093. PubMed ID: 33861785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning approach of automatic identification and counting of blood cells.
    Alam MM; Islam MT
    Healthc Technol Lett; 2019 Aug; 6(4):103-108. PubMed ID: 31531224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images.
    Mahbod A; Polak C; Feldmann K; Khan R; Gelles K; Dorffner G; Woitek R; Hatamikia S; Ellinger I
    Sci Data; 2024 Mar; 11(1):295. PubMed ID: 38486039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An open-source computational tool to automatically quantify immunolabeled retinal ganglion cells.
    Dordea AC; Bray MA; Allen K; Logan DJ; Fei F; Malhotra R; Gregory MS; Carpenter AE; Buys ES
    Exp Eye Res; 2016 Jun; 147():50-56. PubMed ID: 27119563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and qualification of a machine learning algorithm for automated hair counting.
    Sacha JP; Caterino TL; Fisher BK; Carr GJ; Youngquist RS; D'Alessandro BM; Melione A; Canfield D; Bergfeld WF; Piliang MP; Kainkaryam R; Davis MG
    Int J Cosmet Sci; 2021 Nov; 43 Suppl 1():S34-S41. PubMed ID: 34426987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.
    Abdulhay E; Mohammed MA; Ibrahim DA; Arunkumar N; Venkatraman V
    J Med Syst; 2018 Feb; 42(4):58. PubMed ID: 29455440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding.
    Alegro M; Theofilas P; Nguy A; Castruita PA; Seeley W; Heinsen H; Ushizima DM; Grinberg LT
    J Neurosci Methods; 2017 Apr; 282():20-33. PubMed ID: 28267565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disector-based framework for the automatic optical fractionator.
    Dave P; Goldgof D; Hall LO; Kolinko Y; Allen K; Alahmari S; Mouton PR
    J Chem Neuroanat; 2022 Oct; 124():102134. PubMed ID: 35839940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.