These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37217655)

  • 41. GalaxyDock2-HEME: Protein-ligand docking for heme proteins.
    Lee C; Yang J; Kwon S; Seok C
    J Comput Chem; 2023 May; 44(14):1369-1380. PubMed ID: 36809651
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GPathFinder: Identification of Ligand-Binding Pathways by a Multi-Objective Genetic Algorithm.
    Sánchez-Aparicio JE; Sciortino G; Herrmannsdoerfer DV; Chueca PO; Pedregal JR; Maréchal JD
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DynaBiS: A hierarchical sampling algorithm to identify flexible binding sites for large ligands and peptides.
    Melse O; Hecht S; Antes I
    Proteins; 2022 Jan; 90(1):18-32. PubMed ID: 34288078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CaverDock: A Novel Method for the Fast Analysis of Ligand Transport.
    Filipovic J; Vavra O; Plhak J; Bednar D; Marques SM; Brezovsky J; Matyska L; Damborsky J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1625-1638. PubMed ID: 30932844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.
    Wang N; Wang L; Xie XQ
    J Chem Inf Model; 2017 Nov; 57(11):2686-2698. PubMed ID: 29016123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding site and affinity prediction of general anesthetics to protein targets using docking.
    Liu R; Perez-Aguilar JM; Liang D; Saven JG
    Anesth Analg; 2012 May; 114(5):947-55. PubMed ID: 22392968
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-Body Interactions in Molecular Docking Program Devised with Key Water Molecules in Protein Binding Sites.
    Xiao W; Wang D; Shen Z; Li S; Li H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30208655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and validation of a genetic algorithm for flexible docking.
    Jones G; Willett P; Glen RC; Leach AR; Taylor R
    J Mol Biol; 1997 Apr; 267(3):727-48. PubMed ID: 9126849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational representations of protein-ligand interfaces for structure-based virtual screening.
    Qin T; Zhu Z; Wang XS; Xia J; Wu S
    Expert Opin Drug Discov; 2021 Oct; 16(10):1175-1192. PubMed ID: 34011222
    [No Abstract]   [Full Text] [Related]  

  • 52. Development and validation of a modular, extensible docking program: DOCK 5.
    Moustakas DT; Lang PT; Pegg S; Pettersen E; Kuntz ID; Brooijmans N; Rizzo RC
    J Comput Aided Mol Des; 2006; 20(10-11):601-19. PubMed ID: 17149653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular Docking Simulations with ArgusLab.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():203-220. PubMed ID: 31452107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity.
    Luo W; Pei J; Zhu Y
    J Mol Model; 2010 May; 16(5):903-13. PubMed ID: 19823881
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.
    Namasivayam V; Günther R
    Chem Biol Drug Des; 2007 Dec; 70(6):475-84. PubMed ID: 17986206
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational approaches to find the active binding sites of biological targets against busulfan.
    Karthick T; Tandon P
    J Mol Model; 2016 Jun; 22(6):142. PubMed ID: 27240803
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases.
    Ma Z; Huang SY; Cheng F; Zou X
    J Phys Chem B; 2021 Mar; 125(9):2288-2298. PubMed ID: 33651624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.