BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37217750)

  • 1. Spatial imaging of glycoRNA in single cells with ARPLA.
    Ma Y; Guo W; Mou Q; Shao X; Lyu M; Garcia V; Kong L; Lewis W; Ward C; Yang Z; Pan X; Yi SS; Lu Y
    Nat Biotechnol; 2024 Apr; 42(4):608-616. PubMed ID: 37217750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tools to investigate the cell surface: Proximity as a central concept in glycoRNA biology.
    Kageler L; Perr J; Flynn RA
    Cell Chem Biol; 2024 Jun; 31(6):1132-1144. PubMed ID: 38772372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell surface RNAs control neutrophil recruitment.
    Zhang N; Tang W; Torres L; Wang X; Ajaj Y; Zhu L; Luan Y; Zhou H; Wang Y; Zhang D; Kurbatov V; Khan SA; Kumar P; Hidalgo A; Wu D; Lu J
    Cell; 2024 Feb; 187(4):846-860.e17. PubMed ID: 38262409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARPLA for spatial imaging of glycoRNAs.
    Ma Y
    Nat Rev Cancer; 2023 Oct; 23(10):651. PubMed ID: 37644184
    [No Abstract]   [Full Text] [Related]  

  • 5. Proximity ligation assay mediated rolling circle amplification strategy for in situ amplified imaging of glycosylated PD-L1.
    Fu Y; Qian H; Zhou X; Wu Y; Song L; Chen K; Bai D; Yang Y; Li J; Xie G
    Anal Bioanal Chem; 2021 Nov; 413(28):6929-6939. PubMed ID: 34523014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs.
    Chai P; Lebedenko CG; Flynn RA
    Annu Rev Genomics Hum Genet; 2023 Aug; 24():85-107. PubMed ID: 37068783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of Individual RNA Molecules by Proximity Ligation-Based Chromogenic In Situ Hybridization Assay.
    Xia X; Jiang M; Lin C; Ke R
    Methods Mol Biol; 2024; 2822():143-156. PubMed ID: 38907917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small RNAs are modified with N-glycans and displayed on the surface of living cells.
    Flynn RA; Pedram K; Malaker SA; Batista PJ; Smith BAH; Johnson AG; George BM; Majzoub K; Villalta PW; Carette JE; Bertozzi CR
    Cell; 2021 Jun; 184(12):3109-3124.e22. PubMed ID: 34004145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A glimpse at the glycoRNA world.
    Disney MD
    Cell; 2021 Jun; 184(12):3080-3081. PubMed ID: 34115968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification.
    Chen F; Xue J; Bai M; Fan C; Zhao Y
    Acc Chem Res; 2022 Aug; 55(16):2248-2259. PubMed ID: 35904502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Proximity Ligation Assay (PLA) Analysis of Protein Complexes Formed Between Golgi-Resident, Glycosylation-Related Transporters and Transferases in Adherent Mammalian Cell Cultures.
    Maszczak-Seneczko D; Sosicka P; Olczak T; Olczak M
    Methods Mol Biol; 2016; 1496():133-43. PubMed ID: 27632007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ hybridization assay for circular RNA visualization based on padlock probe and rolling circle amplification.
    Lin C; Xiao Z; Zhang X; Wu G
    Biochem Biophys Res Commun; 2022 Jun; 610():30-34. PubMed ID: 35430449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive analysis of tumor-associated membrane protein MUC1 in living cells based on dual-terminal amplification of a DNA ternary complex.
    Liu X; Mao D; Deng G; Song Y; Zhang F; Yang S; Li G; Liu F; Cao W; Zhu X
    Theranostics; 2020; 10(10):4410-4421. PubMed ID: 32292504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lectin-mediated in situ rolling circle amplification on exosomes for probing cancer-related glycan pattern.
    Feng Y; Guo Y; Li Y; Tao J; Ding L; Wu J; Ju H
    Anal Chim Acta; 2018 Dec; 1039():108-115. PubMed ID: 30322541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution.
    Sountoulidis A; Liontos A; Nguyen HP; Firsova AB; Fysikopoulos A; Qian X; Seeger W; Sundström E; Nilsson M; Samakovlis C
    PLoS Biol; 2020 Nov; 18(11):e3000675. PubMed ID: 33216742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Approach to Enriching Glycosylated RNAs: Specific Capture of GlycoRNAs via Solid-Phase Chemistry.
    Li J; Yue S; Gao Z; Hu W; Liu Z; Xu G; Wu Z; Zhang X; Zhang G; Qian F; Jiang J; Yang S
    Anal Chem; 2023 Aug; 95(32):11969-11977. PubMed ID: 37524653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes.
    Klaesson A; Grannas K; Ebai T; Heldin J; Koos B; Leino M; Raykova D; Oelrich J; Arngården L; Söderberg O; Landegren U
    Sci Rep; 2018 Mar; 8(1):5400. PubMed ID: 29599435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells.
    Ge J; Zhang LL; Liu SJ; Yu RQ; Chu X
    Anal Chem; 2014 Feb; 86(3):1808-15. PubMed ID: 24417222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximity Ligation Assay (PLA) for Fillets of
    Clayworth K; Gilbert M; Auld V
    Cold Spring Harb Protoc; 2023 Jun; ():. PubMed ID: 37399180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.