These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 37217780)
1. Correlation between airborne pollen data and the risk of tick-borne encephalitis in northern Italy. Marini G; Tagliapietra V; Cristofolini F; Cristofori A; Dagostin F; Zuccali MG; Molinaro S; Gottardini E; Rizzoli A Sci Rep; 2023 May; 13(1):8262. PubMed ID: 37217780 [TBL] [Abstract][Full Text] [Related]
2. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Jaenson TG; Hjertqvist M; Bergström T; Lundkvist A Parasit Vectors; 2012 Aug; 5():184. PubMed ID: 22937961 [TBL] [Abstract][Full Text] [Related]
3. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Cagnacci F; Bolzoni L; Rosà R; Carpi G; Hauffe HC; Valent M; Tagliapietra V; Kazimirova M; Koci J; Stanko M; Lukan M; Henttonen H; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):365-72. PubMed ID: 22464896 [TBL] [Abstract][Full Text] [Related]
4. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Rosà R; Tagliapietra V; Manica M; Arnoldi D; Hauffe HC; Rossi C; Rosso F; Henttonen H; Rizzoli A Int J Parasitol; 2019 Sep; 49(10):779-787. PubMed ID: 31348960 [TBL] [Abstract][Full Text] [Related]
5. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Jaenson TGT; Petersson EH; Jaenson DGE; Kindberg J; Pettersson JH; Hjertqvist M; Medlock JM; Bengtsson H Parasit Vectors; 2018 Aug; 11(1):477. PubMed ID: 30153856 [TBL] [Abstract][Full Text] [Related]
6. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Bolzoni L; Rosà R; Cagnacci F; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):373-81. PubMed ID: 22429768 [TBL] [Abstract][Full Text] [Related]
7. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Hudson PJ; Rizzoli A; Rosà R; Chemini C; Jones LD; Gould EA Med Vet Entomol; 2001 Sep; 15(3):304-13. PubMed ID: 11583449 [TBL] [Abstract][Full Text] [Related]
8. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. Rizzoli A; Hauffe HC; Tagliapietra V; Neteler M; Rosà R PLoS One; 2009; 4(2):e4336. PubMed ID: 19183811 [TBL] [Abstract][Full Text] [Related]
9. Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. Knap N; Avšič-Županc T PLoS One; 2013; 8(6):e66380. PubMed ID: 23776668 [TBL] [Abstract][Full Text] [Related]
10. Epidemiology of Tick-borne encephalitis in North-Eastern Italy (2017-2020): international insights from national notification reports. Riccò M Acta Biomed; 2021 Nov; 92(5):e2021229. PubMed ID: 34738573 [TBL] [Abstract][Full Text] [Related]
11. Tick burden on European roe deer (Capreolus capreolus) from Saxony, Germany, and detection of tick-borne encephalitis virus in attached ticks. Król N; Chitimia-Dobler L; Dobler G; Karliuk Y; Birka S; Obiegala A; Pfeffer M Parasitol Res; 2020 Apr; 119(4):1387-1392. PubMed ID: 32211989 [TBL] [Abstract][Full Text] [Related]
13. Characterization of tick-borne encephalitis (TBE) foci in Germany and Latvia (1997-2000). Süss J; Schrader C; Abel U; Bormane A; Duks A; Kalnina V Int J Med Microbiol; 2002 Jun; 291 Suppl 33():34-42. PubMed ID: 12141755 [TBL] [Abstract][Full Text] [Related]
14. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia. Jemeršić L; Dežđek D; Brnić D; Prpić J; Janicki Z; Keros T; Roić B; Slavica A; Terzić S; Konjević D; Beck R Ticks Tick Borne Dis; 2014 Feb; 5(1):7-13. PubMed ID: 24035586 [TBL] [Abstract][Full Text] [Related]
15. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Kriz B; Daniel M; Benes C; Maly M Vector Borne Zoonotic Dis; 2014 Nov; 14(11):801-7. PubMed ID: 25409271 [TBL] [Abstract][Full Text] [Related]
16. Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Carpi G; Cagnacci F; Neteler M; Rizzoli A Epidemiol Infect; 2008 Oct; 136(10):1416-24. PubMed ID: 18081949 [TBL] [Abstract][Full Text] [Related]
17. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Tokarevich NK; Tronin AA; Blinova OV; Buzinov RV; Boltenkov VP; Yurasova ED; Nurse J Glob Health Action; 2011; 4():8448. PubMed ID: 22028678 [TBL] [Abstract][Full Text] [Related]
18. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia. Shchuchinova LD; Kozlova IV; Zlobin VI Ticks Tick Borne Dis; 2015 Apr; 6(3):322-9. PubMed ID: 25748512 [TBL] [Abstract][Full Text] [Related]
19. A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming? Zeman P; Bene C Int J Med Microbiol; 2004 Apr; 293 Suppl 37():48-54. PubMed ID: 15146984 [TBL] [Abstract][Full Text] [Related]
20. Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis incidence in the Russian Arctic: the case of the Komi Republic. Tokarevich N; Tronin A; Gnativ B; Revich B; Blinova O; Evengard B Int J Circumpolar Health; 2017; 76(1):1298882. PubMed ID: 28362566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]