These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 37218279)
1. Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Demmerle J; Hao S; Cai D Nucleus; 2023 Dec; 14(1):2213551. PubMed ID: 37218279 [TBL] [Abstract][Full Text] [Related]
2. Phase separation in transcription factor dynamics and chromatin organization. Wagh K; Garcia DA; Upadhyaya A Curr Opin Struct Biol; 2021 Dec; 71():148-155. PubMed ID: 34303933 [TBL] [Abstract][Full Text] [Related]
3. Mesoscale structure-function relationships in mitochondrial transcriptional condensates. Feric M; Sarfallah A; Dar F; Temiakov D; Pappu RV; Misteli T Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2207303119. PubMed ID: 36191226 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional condensates: a blessing or a curse for gene regulation? Stortz M; Presman DM; Levi V Commun Biol; 2024 Feb; 7(1):187. PubMed ID: 38365945 [TBL] [Abstract][Full Text] [Related]
5. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. Li W; Jiang H J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007 [TBL] [Abstract][Full Text] [Related]
6. Interplay of dynamic genome organization and biomolecular condensates. Chung YC; Tu LC Curr Opin Cell Biol; 2023 Dec; 85():102252. PubMed ID: 37806293 [TBL] [Abstract][Full Text] [Related]
7. Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response. Chowdhary S; Kainth AS; Paracha S; Gross DS; Pincus D Mol Cell; 2022 Nov; 82(22):4386-4399.e7. PubMed ID: 36327976 [TBL] [Abstract][Full Text] [Related]
9. Emerging insights into transcriptional condensates. Ryu K; Park G; Cho WK Exp Mol Med; 2024 Apr; 56(4):820-826. PubMed ID: 38658705 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous elasticity drives ripening and controls bursting kinetics of transcriptional condensates. Meng L; Mao S; Lin J Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2316610121. PubMed ID: 38489385 [TBL] [Abstract][Full Text] [Related]
11. Biomolecular condensates at sites of DNA damage: More than just a phase. Spegg V; Altmeyer M DNA Repair (Amst); 2021 Oct; 106():103179. PubMed ID: 34311273 [TBL] [Abstract][Full Text] [Related]
12. Function moves biomolecular condensates in phase space. Feric M; Misteli T Bioessays; 2022 May; 44(5):e2200001. PubMed ID: 35243657 [TBL] [Abstract][Full Text] [Related]
13. Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. Dai Z; Li G; Chen Q; Yang X Biochim Biophys Acta Gene Regul Mech; 2022 May; 1865(4):194827. PubMed ID: 35618207 [TBL] [Abstract][Full Text] [Related]
14. Splicing regulation through biomolecular condensates and membraneless organelles. Giudice J; Jiang H Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325 [TBL] [Abstract][Full Text] [Related]
15. Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Laflamme G; Mekhail K Commun Biol; 2020 Dec; 3(1):773. PubMed ID: 33319830 [TBL] [Abstract][Full Text] [Related]
16. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. Kim YJ; Lee M; Lee YT; Jing J; Sanders JT; Botten GA; He L; Lyu J; Zhang Y; Mettlen M; Ly P; Zhou Y; Xu J Sci Adv; 2023 Mar; 9(13):eadg1123. PubMed ID: 37000871 [TBL] [Abstract][Full Text] [Related]