These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 37218359)
81. Stable Interlayer Zinc Plating/Stripping in the Maxwell-Wagner Effect-Enhanced Interface. Wang H; Liu L; Pang W; Li Y; Sun Z; Zhang Z; Chen X; Song H ACS Appl Mater Interfaces; 2024 Sep; 16(35):46302-46311. PubMed ID: 39177229 [TBL] [Abstract][Full Text] [Related]
82. An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode. Yan C; Cheng XB; Yao YX; Shen X; Li BQ; Li WJ; Zhang R; Huang JQ; Li H; Zhang Q Adv Mater; 2018 Nov; 30(45):e1804461. PubMed ID: 30259585 [TBL] [Abstract][Full Text] [Related]
83. Towards low-temperature dendrite-free zinc anode by constructing functional MXene buffer layer with duplex zincophilic sites. Li C; Cheng X; Zhang Y; Zhu J; Zhou H; Yang Y; Xu J; Wang J; Wang Y; Yu H; Shen C; Zhan L; Ling L J Colloid Interface Sci; 2024 Oct; 671():505-515. PubMed ID: 38815386 [TBL] [Abstract][Full Text] [Related]
84. In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for High-Performance Aqueous Zn-SeS Li J; He B; Zhang Y; Cheng Z; Yuan L; Huang Y; Li Z Small; 2022 May; 18(18):e2200567. PubMed ID: 35355398 [TBL] [Abstract][Full Text] [Related]
85. Achieving Long-Cycle-Life Zinc-Ion Batteries through a Zincophilic Prussian Blue Analogue Interphase. Chang K; Zhao S; Deng W Molecules; 2024 Mar; 29(7):. PubMed ID: 38611781 [TBL] [Abstract][Full Text] [Related]
86. Mitigating Zn Dendrite Growth and Enhancing the Utilization of Zn Electrode in Aqueous Zn-Ion Batteries. Gao Y; Wang M; Chu Y; Li X; Li J; Chen J; Ma Z; Guo B; Yu B; Pan Y; Huang Y; Cao G; Li X Small; 2024 Aug; ():e2405139. PubMed ID: 39129665 [TBL] [Abstract][Full Text] [Related]
87. Inorganic Hybrid Interfacial Layer for a Stable Zinc Metal Anode. Hou Z; Ma H; Tao H; Yang XL ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38037832 [TBL] [Abstract][Full Text] [Related]
88. Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes. Ma X; Yu H; Yan C; Chen Q; Wang Z; Chen Y; Chen G; Lv C J Colloid Interface Sci; 2024 Jun; 664():539-548. PubMed ID: 38484522 [TBL] [Abstract][Full Text] [Related]
89. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. Deng Y; Wu Y; Wang L; Zhang K; Wang Y; Yan L J Colloid Interface Sci; 2023 Mar; 633():142-154. PubMed ID: 36436347 [TBL] [Abstract][Full Text] [Related]
90. Highly Strengthened and Toughened Zn-Li-Mn Alloys as Long-Cycling Life and Dendrite-Free Zn Anode for Aqueous Zinc-Ion Batteries. Zhang Y; Yang X; Hu Y; Hu K; Lin X; Liu X; Reddy KM; Xie G; Qiu HJ Small; 2022 Apr; 18(17):e2200787. PubMed ID: 35344273 [TBL] [Abstract][Full Text] [Related]
91. The Organic Ligand Etching Method for Constructing In Situ Terraced Protective Layer Toward Stable Aqueous Zn Anode. Li L; Yang H; Yuan Z; Tan Y; Zhang Y; Miao C; Chen D; Li G; Han W Small; 2023 Dec; 19(52):e2305554. PubMed ID: 37635116 [TBL] [Abstract][Full Text] [Related]
92. Robust Zinc Anode Enabled by Sulfonate-Rich MOF-Modified Separator. Chen R; Zhang G; Zhou H; Li J; Li J; Chung LH; Hu X; He J Small; 2024 Feb; 20(8):e2305687. PubMed ID: 37840433 [TBL] [Abstract][Full Text] [Related]
93. Biomolecular Regulation of Zinc Deposition to Achieve Ultra-Long Life and High-Rate Zn Metal Anodes. Zhu J; Deng W; Yang N; Xu X; Huang C; Zhou Y; Zhang M; Yuan X; Hu J; Li C; Li R Small; 2022 Jul; 18(29):e2202509. PubMed ID: 35748125 [TBL] [Abstract][Full Text] [Related]
94. Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries. Chan CY; Wang Z; Li Y; Yu H; Fei B; Xin JH ACS Appl Mater Interfaces; 2021 Jul; 13(26):30594-30602. PubMed ID: 34165274 [TBL] [Abstract][Full Text] [Related]
95. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. Li W; Wang K; Zhou M; Zhan H; Cheng S; Jiang K ACS Appl Mater Interfaces; 2018 Jul; 10(26):22059-22066. PubMed ID: 29882643 [TBL] [Abstract][Full Text] [Related]
96. Ultrathin surface coating of conductive and zincophilic titanium oxynitride enables stable zinc anodes for aqueous zinc-ion batteries. Lei P; Liu L; Wang X; Su Y; Yan K; Wang B; Cheng J J Colloid Interface Sci; 2024 Oct; 679(Pt A):846-854. PubMed ID: 39396461 [TBL] [Abstract][Full Text] [Related]
97. Building Sustainable Saturated Fatty Acid-Zinc Interfacial Layer toward Ultra-Stable Zinc Metal Anodes. Fu M; Yu H; Huang S; Li Q; Qu B; Zhou L; Kuang GC; Chen Y; Chen L Nano Lett; 2023 Apr; 23(8):3573-3581. PubMed ID: 37042480 [TBL] [Abstract][Full Text] [Related]
98. Ultra-Stable Aqueous Zinc Anodes: Enabling High-Performance Zinc-Ion Batteries via a ZnSiF Huang Y; Guo R; Li Z; Zhang J; Liu W; Kang F Adv Sci (Weinh); 2024 Oct; ():e2407201. PubMed ID: 39373706 [TBL] [Abstract][Full Text] [Related]
99. Highly Reversible Zn Anodes Achieved by Enhancing Ion-Transport Kinetics and Modulating Zn (002) Deposition. Shi Z; Yang M; Ren Y; Wang Y; Guo J; Yin J; Lai F; Zhang W; Chen S; Alshareef HN; Liu T ACS Nano; 2023 Nov; 17(21):21893-21904. PubMed ID: 37897736 [TBL] [Abstract][Full Text] [Related]
100. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries. Chen P; Yuan X; Xia Y; Zhang Y; Fu L; Liu L; Yu N; Huang Q; Wang B; Hu X; Wu Y; van Ree T Adv Sci (Weinh); 2021 Jun; 8(11):e2100309. PubMed ID: 34105273 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]