These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37218773)

  • 1. Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy.
    Inamullah ; Hassan S; Alrajeh NA; Mohammed EA; Khan S
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37218773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models.
    Pavithra S; Jaladi D; Tamilarasi K
    Photodiagnosis Photodyn Ther; 2024 Aug; 48():104259. PubMed ID: 38944405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs.
    Pandey PU; Ballios BG; Christakis PG; Kaplan AJ; Mathew DJ; Ong Tone S; Wan MJ; Micieli JA; Wong JCY
    Br J Ophthalmol; 2024 Feb; 108(3):417-423. PubMed ID: 36720585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hybrid Technique for Diabetic Retinopathy Detection Based on Ensemble-Optimized CNN and Texture Features.
    Ishtiaq U; Abdullah ERMF; Ishtiaque Z
    Diagnostics (Basel); 2023 May; 13(10):. PubMed ID: 37238304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet.
    Vijayan M; S V
    Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique.
    AbdelMaksoud E; Barakat S; Elmogy M
    Med Biol Eng Comput; 2022 Jul; 60(7):2015-2038. PubMed ID: 35545738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN.
    Durai DBJ; Jaya T
    Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convolutional neural network for the screening and staging of diabetic retinopathy.
    Shaban M; Ogur Z; Mahmoud A; Switala A; Shalaby A; Abu Khalifeh H; Ghazal M; Fraiwan L; Giridharan G; Sandhu H; El-Baz AS
    PLoS One; 2020; 15(6):e0233514. PubMed ID: 32569310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDLDR: An Ensemble Deep Learning Technique for Detection and Classification of Diabetic Retinopathy.
    Mondal SS; Mandal N; Singh KK; Singh A; Izonin I
    Diagnostics (Basel); 2022 Dec; 13(1):. PubMed ID: 36611416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets.
    Chetoui M; Akhloufi MA
    J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519
    [No Abstract]   [Full Text] [Related]  

  • 13. Ensemble Framework of Deep CNNs for Diabetic Retinopathy Detection.
    Jinfeng G; Qummar S; Junming Z; Ruxian Y; Khan FG
    Comput Intell Neurosci; 2020; 2020():8864698. PubMed ID: 33381160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques.
    Farooq MS; Arooj A; Alroobaea R; Baqasah AM; Jabarulla MY; Singh D; Sardar R
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network.
    Liu YP; Li Z; Xu C; Li J; Liang R
    Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features.
    Harangi B; Toth J; Baran A; Hajdu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2699-2702. PubMed ID: 31946452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation-Assisted Fully Convolutional Neural Network Enhances Deep Learning Performance to Identify Proliferative Diabetic Retinopathy.
    Alam M; Zhao EJ; Lam CK; Rubin DL
    J Clin Med; 2023 Jan; 12(1):. PubMed ID: 36615186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features.
    Butt MM; Iskandar DNFA; Abdelhamid SE; Latif G; Alghazo R
    Diagnostics (Basel); 2022 Jul; 12(7):. PubMed ID: 35885512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.