These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37218774)

  • 1. Multi-Terminal Nonwoven Stochastic Memristive Devices Based on Polyamide-6 and Polyaniline for Neuromorphic Computing.
    Prudnikov N; Malakhov S; Kulagin V; Emelyanov A; Chvalun S; Demin V; Erokhin V
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic memristive devices for computing and neuromorphic applications.
    Gaba S; Sheridan P; Zhou J; Choi S; Lu W
    Nanoscale; 2013 Jul; 5(13):5872-8. PubMed ID: 23698627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of polyaniline memristive device switching voltage by nucleotide-free analogue of vitamin B
    Prudnikov NV; Emelyanov AV; Serenko MV; Dereven'kov IA; Maiorova LA; Erokhin VV
    Nanotechnology; 2024 May; 35(33):. PubMed ID: 38759638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices.
    Zahari F; Pérez E; Mahadevaiah MK; Kohlstedt H; Wenger C; Ziegler M
    Sci Rep; 2020 Sep; 10(1):14450. PubMed ID: 32879397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging memristive neurons for neuromorphic computing and sensing.
    Li Z; Tang W; Zhang B; Yang R; Miao X
    Sci Technol Adv Mater; 2023; 24(1):2188878. PubMed ID: 37090846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing.
    Shvetsov BS; Minnekhanov AA; Emelyanov AV; Ilyasov AI; Grishchenko YV; Zanaveskin ML; Nesmelov AA; Streltsov DR; Patsaev TD; Vasiliev AL; Rylkov VV; Demin VA
    Nanotechnology; 2022 Mar; 33(25):. PubMed ID: 35276689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation.
    Payvand M; Nair MV; Müller LK; Indiveri G
    Faraday Discuss; 2019 Feb; 213(0):487-510. PubMed ID: 30357205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks.
    Milano G; Pedretti G; Montano K; Ricci S; Hashemkhani S; Boarino L; Ielmini D; Ricciardi C
    Nat Mater; 2022 Feb; 21(2):195-202. PubMed ID: 34608285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memristive tonotopic mapping with volatile resistive switching memory devices.
    Milozzi A; Ricci S; Ielmini D
    Nat Commun; 2024 Apr; 15(1):2812. PubMed ID: 38561389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LiNbO
    Zhao Y; Duan W; Wang C; Xiao S; Li Y; Li Y; An J; Li H
    Front Neurosci; 2023; 17():1177118. PubMed ID: 37113143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amorphous Boron Nitride Memristive Device for High-Density Memory and Neuromorphic Computing Applications.
    Khot AC; Dongale TD; Nirmal KA; Sung JH; Lee HJ; Nikam RD; Kim TG
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10546-10557. PubMed ID: 35179364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Approach to the Fabrication of Memristive Neuromorphic Devices: Compositionally Graded Films.
    Yoon JG
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Stability Memristive Devices Based on Pd Conductive Filaments and Its Applications in Neuromorphic Computing.
    Wang H; Yan X; Wang S; Lu N
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17844-17851. PubMed ID: 33844494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer redox-based HfO
    Park S; Spetzler B; Ivanov T; Ziegler M
    Sci Rep; 2022 Oct; 12(1):18266. PubMed ID: 36309573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible memristive device based on an agarose@gold nanoparticle-nanocomposite layer obtained from nature for neuromorphic computing.
    Kim Y; An JS; Lee D; Ryu SY; Hwang YC; Kim DH; Kim TW
    Sci Rep; 2023 Apr; 13(1):6491. PubMed ID: 37081006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HfO
    Wang C; Mao GQ; Huang M; Huang E; Zhang Z; Yuan J; Cheng W; Xue KH; Wang X; Miao X
    Adv Sci (Weinh); 2022 Jul; 9(21):e2201446. PubMed ID: 35644043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced read resolution in reconfigurable memristive synapses for Spiking Neural Networks.
    Das H; Schuman C; Chakraborty NN; Rose GS
    Sci Rep; 2024 Apr; 14(1):8897. PubMed ID: 38632304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Resistive Switching Constancy and Quantum Conductance in High-k Dielectric-Based Memristor for Neuromorphic Engineering.
    Ismail M; Mahata C; Kang M; Kim S
    Nanoscale Res Lett; 2022 Jun; 17(1):61. PubMed ID: 35749003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Powered Memristive Systems for Storage and Neuromorphic Computing.
    Shi J; Wang Z; Tao Y; Xu H; Zhao X; Lin Y; Liu Y
    Front Neurosci; 2021; 15():662457. PubMed ID: 33867930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.