These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37219118)

  • 1. Electrically induced adiabatic frequency conversion in an integrated lithium niobate ring resonator.
    He X; Cortes-Herrera L; Opong-Mensah K; Zhang Y; Song M; Agrawal GP; Cardenas J
    Opt Lett; 2022 Nov; 47(22):5849-5852. PubMed ID: 37219118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pockels-effect-based adiabatic frequency conversion in ultrahigh-Q microresonators.
    Minet Y; Reis L; Szabados J; Werner CS; Zappe H; Buse K; Breunig I
    Opt Express; 2020 Feb; 28(3):2939-2947. PubMed ID: 32121971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous adiabatic frequency conversion for FMCW-LiDAR.
    Mrokon A; Oehler J; Breunig I
    Sci Rep; 2024 Feb; 14(1):4990. PubMed ID: 38424205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Chip Optical Beam Manipulation with an Electrically Tunable Lithium-Niobate-on-Insulator Metasurface.
    Dou L; Xie L; Wei Z; Wang Z; Cheng X
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigating photorefractive effect in thin-film lithium niobate microring resonators.
    Xu Y; Shen M; Lu J; Surya JB; Sayem AA; Tang HX
    Opt Express; 2021 Feb; 29(4):5497-5504. PubMed ID: 33726085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-optically tunable single-frequency lasing from neodymium-doped lithium niobate microresonators.
    Minet Y; Herr SJ; Breunig I; Zappe H; Buse K
    Opt Express; 2022 Aug; 30(16):28335-28344. PubMed ID: 36299031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations.
    Tang J; Li M; Sun S; Li Z; Li W; Zhu N
    Opt Lett; 2016 Oct; 41(20):4609-4612. PubMed ID: 28005848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically tuned coupling of lithium niobate microresonators.
    Jia D; Zhang R; Yang C; Hao Z; Yu X; Gao F; Bo F; Zhang G; Xu J
    Opt Lett; 2023 May; 48(10):2744-2747. PubMed ID: 37186755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator.
    Luo R; Jiang H; Rogers S; Liang H; He Y; Lin Q
    Opt Express; 2017 Oct; 25(20):24531-24539. PubMed ID: 29041397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity resonator-integrated guided-mode resonance filters with on-chip electro- and thermo-optic tuning.
    Monmayrant A; Calvez S; Calmon PF; Dubreuil P; Charlot S; Fehrembach AL; Popov E; Gauthier-Lafaye O
    Opt Express; 2022 May; 30(10):16669-16676. PubMed ID: 36221504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneously integrated widely tunable laser using lattice filter and ring resonator on Si photonics platform.
    Aihara T; Hiraki T; Fujii T; Takeda K; Tsuchizawa T; Kakitsuka T; Fukuda H; Matsuo S
    Opt Express; 2022 May; 30(10):15820-15829. PubMed ID: 36221439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate.
    van Herpen M; Te Lintel Hekkert S; Bisson SE; Harren FJ
    Opt Lett; 2002 Apr; 27(8):640-2. PubMed ID: 18007888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically tunable dual polarization states of light using lithium niobate-based nanograting.
    Hou Y; Xu Y; Du B; Zhang Y; Zhang L
    Opt Lett; 2024 Feb; 49(3):470-473. PubMed ID: 38300032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser.
    Han Y; Zhang X; Huang F; Liu X; Xu M; Lin Z; He M; Yu S; Wang R; Cai X
    Opt Lett; 2021 Nov; 46(21):5413-5416. PubMed ID: 34724488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate.
    Shao L; Sinclair N; Leatham J; Hu Y; Yu M; Turpin T; Crowe D; Lončar M
    Opt Express; 2020 Aug; 28(16):23728-23738. PubMed ID: 32752365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry.
    Skoczowsky D; Jechow A; Menzel R; Paschke K; Erbert G
    Opt Lett; 2010 Jan; 35(2):232-4. PubMed ID: 20081978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz photonic integrated circuit for frequency tuning and power modulation.
    Kundu I; Freeman JR; Dean P; Li LH; Linfield EH; Davies AG
    Opt Express; 2020 Feb; 28(4):4374-4386. PubMed ID: 32121675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadly tunable and low power penalty radio frequency phase shifter using a coupled silicon microcavity.
    Pandey A; Selvaraja SK
    Appl Opt; 2020 Jan; 59(2):425-432. PubMed ID: 32225323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform.
    Ahmed ANR; Shi S; Mercante AJ; Prather DW
    Opt Express; 2019 Oct; 27(21):30741-30751. PubMed ID: 31684317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes.
    Chen L; Wood MG; Reano RM
    Opt Express; 2013 Nov; 21(22):27003-10. PubMed ID: 24216923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.