These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
3. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
4. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
6. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials. Mafusire C; Krüger TPJ J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326 [TBL] [Abstract][Full Text] [Related]
7. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils. Mahajan VN Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284 [TBL] [Abstract][Full Text] [Related]
8. Average gradient of Zernike polynomials over polygons. Akondi V; Dubra A Opt Express; 2020 Jun; 28(13):18876-18886. PubMed ID: 32672177 [TBL] [Abstract][Full Text] [Related]
9. Laboratory study of aberration calculation in underwater turbulence using Shack-Hartmann wavefront sensor and Zernike polynomials. Aghajani A; Kashani FD; Yousefi M Opt Express; 2024 Apr; 32(9):15978-15992. PubMed ID: 38859236 [TBL] [Abstract][Full Text] [Related]
10. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Lee H Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184 [TBL] [Abstract][Full Text] [Related]
11. Comparison of wavefront reconstructions with Zernike polynomials and Fourier transforms. Dai GM J Refract Surg; 2006 Nov; 22(9):943-8. PubMed ID: 17124894 [TBL] [Abstract][Full Text] [Related]
14. Generalization of Zernike polynomials for regular portions of circles and ellipses. Navarro R; López JL; Díaz JA; Sinusía EP Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506 [TBL] [Abstract][Full Text] [Related]
15. Zernike olivary polynomials for applications with olivary pupils. Zheng Y; Sun S; Li Y Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076 [TBL] [Abstract][Full Text] [Related]
16. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment. Díaz JA; Mahajan VN Appl Opt; 2013 Aug; 52(24):5962-4. PubMed ID: 24084998 [TBL] [Abstract][Full Text] [Related]
17. Zernike radial slope polynomials for wavefront reconstruction and refraction. Nam J; Thibos LN; Iskander DR J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1035-48. PubMed ID: 19340280 [TBL] [Abstract][Full Text] [Related]
18. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
19. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms. Dai F; Tang F; Wang X; Feng P; Sasaki O Opt Express; 2012 Jan; 20(2):1530-44. PubMed ID: 22274496 [TBL] [Abstract][Full Text] [Related]
20. Modal integration of Hartmann and Shack-Hartmann patterns. Hernández-Gómez G; Malacara-Hernández Z; Malacara-Doblado D; Díaz-Uribe R; Malacara-Hernández D J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):846-51. PubMed ID: 24695148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]