These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37219191)

  • 21. Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.
    Pandey AK; Larrieu T; Dovillaire G; Kazamias S; Guilbaud O
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavefront measurement made by an off-the-shelf laser-scanning pico projector.
    Chen JW; Liang CW; Chen SH
    Appl Opt; 2015 Oct; 54(28):E235-40. PubMed ID: 26479659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration.
    Yang W; Wang J; Wang B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor.
    Starikov FA; Kochemasov GG; Kulikov SM; Manachinsky AN; Maslov NV; Ogorodnikov AV; Sukharev SA; Aksenov VP; Izmailov IV; Kanev FY; Atuchin VV; Soldatenkov IS
    Opt Lett; 2007 Aug; 32(16):2291-3. PubMed ID: 17700762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.
    Zhu Z; Mu Q; Li D; Yang C; Cao Z; Hu L; Xuan L
    Opt Express; 2016 Oct; 24(21):24611-24623. PubMed ID: 27828187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms.
    Dai F; Tang F; Wang X; Sasaki O; Feng P
    Appl Opt; 2012 Jul; 51(21):5028-37. PubMed ID: 22858941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modal processing of Hartmann and Shack-Hartmann patterns by means of a least squares fitting of the transverse aberrations.
    Hernández-Gómez G; Malacara-Doblado D; Malacara-Hernández Z; Malacara-Hernández D
    Appl Opt; 2014 Nov; 53(31):7422-34. PubMed ID: 25402908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zernike-like systems in polygons and polygonal facets.
    Ferreira C; López JL; Navarro R; Sinusía EP
    Appl Opt; 2015 Jul; 54(21):6575-83. PubMed ID: 26367845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials.
    Robert Iskander D; Davis BA; Collins MJ; Franklin R
    Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wavefront Characteristics of a Digital Holographic Optical Element.
    Lee BR; Marichal-Hernández JG; Rodríguez-Ramos JM; Son WH; Hong S; Son JY
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave-front reconstruction using a Shack-Hartmann sensor.
    Lane RG; Tallon M
    Appl Opt; 1992 Nov; 31(32):6902-8. PubMed ID: 20733929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set.
    Zhao C; Burge JH
    Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Centroid error due to non-uniform lenslet illumination in the Shack-Hartmann wavefront sensor.
    Akondi V; Steven S; Dubra A
    Opt Lett; 2019 Sep; 44(17):4167-4170. PubMed ID: 31465354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.