These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37219197)
1. Hybrid photonic bandgap effect in twisted hollow-core photonic bandgap fibers. Zhu Y; Li W; Gao F; Xu X; Song N Opt Lett; 2022 Dec; 47(23):6161-6164. PubMed ID: 37219197 [TBL] [Abstract][Full Text] [Related]
2. 7-cell hollow-core photonic bandgap fiber with broad spectral bandwidth and low loss. Zhang X; Gao S; Wang Y; Ding W; Wang X; Wang P Opt Express; 2019 Apr; 27(8):11608-11616. PubMed ID: 31053003 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers. Yang F; Jin W; Ho HL; Wang F; Liu W; Ma L; Hu Y Opt Express; 2013 Jul; 21(13):15514-21. PubMed ID: 23842338 [TBL] [Abstract][Full Text] [Related]
4. Unique loss characteristics in TE Kubota H; Kosake N; Miyoshi Y; Ohashi M Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439 [TBL] [Abstract][Full Text] [Related]
5. Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber. You Y; Guo H; Hao Y; Wang Z; Liu YG Opt Express; 2021 Jul; 29(15):24226-24236. PubMed ID: 34614672 [TBL] [Abstract][Full Text] [Related]
6. Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. Petrovich MN; Poletti F; Wooler JP; Heidt AM; Baddela NK; Li Z; Gray DR; Slavík R; Parmigiani F; Wheeler NV; Hayes JR; Numkam E; Grűner-Nielsen L; Pálsdóttir B; Phelan R; Kelly B; O'Carroll J; Becker M; MacSuibhne N; Zhao J; Gunning FC; Ellis AD; Petropoulos P; Alam SU; Richardson DJ Opt Express; 2013 Nov; 21(23):28559-69. PubMed ID: 24514368 [TBL] [Abstract][Full Text] [Related]
7. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943 [TBL] [Abstract][Full Text] [Related]
8. Control of surface modes in low loss hollow-core photonic bandgap fibers. Amezcua-Correa R; Gèrôme F; Leon-Saval SG; Broderick NG; Birks TA; Knight JC Opt Express; 2008 Jan; 16(2):1142-9. PubMed ID: 18542188 [TBL] [Abstract][Full Text] [Related]
9. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy. Falk CI; Hald J; Petersen JC; Lyngsø JK Appl Opt; 2010 Jul; 49(20):3854-9. PubMed ID: 20648156 [TBL] [Abstract][Full Text] [Related]
10. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167 [TBL] [Abstract][Full Text] [Related]
11. Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber. Li H; Ren G; Lian Y; Zhu B; Tang M; Zhao Y; Jian S Opt Lett; 2016 Aug; 41(15):3591-4. PubMed ID: 27472626 [TBL] [Abstract][Full Text] [Related]
12. Few-period helically twisted all-solid photonic bandgap fibers. Li J; Fan P; Sun LP; Wu C; Guan BO Opt Lett; 2018 Feb; 43(4):655-658. PubMed ID: 29444045 [TBL] [Abstract][Full Text] [Related]
13. Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Wan B; Zhu L; Ma X; Li T; Zhang J Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406650 [TBL] [Abstract][Full Text] [Related]
14. Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure. Cao Y; Jin W; Yang F; Ho HL Opt Express; 2014 Jun; 22(11):13190-201. PubMed ID: 24921514 [TBL] [Abstract][Full Text] [Related]