BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37219754)

  • 1. Influence of seasonal variation to the population growth and ecophysiology of Typha domingensis (Typhaceae).
    da Cunha Cruz Y; Scarpa ALM; Díaz AS; Pereira MP; de Castro EM; Pereira FJ
    J Plant Res; 2023 Sep; 136(5):665-678. PubMed ID: 37219754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology.
    Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; Castro EM; Pereira FJ
    Braz J Biol; 2018 Aug; 78(3):509-516. PubMed ID: 29995113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root anatomy, growth, and development of Typha domingensis Pers. (Typhaceae) and their relationship with cadmium absorption, accumulation, and tolerance.
    de Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; de Castro EM; Pereira FJ
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19878-19889. PubMed ID: 35080729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland.
    Osland MJ; González E; Richardson CJ
    Ecol Appl; 2011 Apr; 21(3):715-28. PubMed ID: 21639039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar architecture and physio-biochemical plasticity determines survival of Typha domingensis pers. Ecotypes in nickel and salt affected soil.
    Akhter N; Aqeel M; Hameed M; Sakit Alhaithloul HA; Alghanem SM; Shahnaz MM; Hashem M; Alamri S; Khalid N; Al-Zoubi OM; Iqbal MF; Masood T; Noman A
    Environ Pollut; 2021 Oct; 286():117316. PubMed ID: 33990051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance to mild shading levels in cattail as related to increased photosynthesis and changes in its leaf area and anatomy.
    Dos Reis CHG; da Silva PN; de Castro EM; Pereira FJ
    J Plant Res; 2024 Mar; ():. PubMed ID: 38517654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for the Impact of Management Scenarios on Typha Domingensis (Cattail) in an Everglades Wetland.
    Lagerwall G; Kiker G; Muñoz-Carpena R; Wang N
    Environ Manage; 2017 Jan; 59(1):129-140. PubMed ID: 27812795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland.
    Gomes MV; de Souza RR; Teles VS; Araújo Mendes É
    Chemosphere; 2014 May; 103():228-33. PubMed ID: 24369743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with
    Maine MA; Hadad HR; Camaño Silvestrini NE; Nocetti E; Sanchez GC; Campagnoli MA
    Int J Phytoremediation; 2022; 24(1):66-75. PubMed ID: 34077330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of
    Machado AI; Fragoso R; Dordio AV; Duarte E
    Int J Phytoremediation; 2020; 22(8):863-871. PubMed ID: 32028785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus over the period of plant establishment in a constructed floating wetland.
    Rigotti JA; Paqualini JP; Rodrigues LR
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8927-8935. PubMed ID: 33410026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina).
    Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.
    Hadad HR; Mufarrege MM; Di Luca GA; Maine MA
    Water Sci Technol; 2017 Apr; 2017(1):270-275. PubMed ID: 29698241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.
    Shehzadi M; Afzal M; Khan MU; Islam E; Mobin A; Anwar S; Khan QM
    Water Res; 2014 Jul; 58():152-9. PubMed ID: 24755300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus transformations during decomposition of wetland macrophytes.
    Cheesman AW; Turner BL; Inglett PW; Reddy KR
    Environ Sci Technol; 2010 Dec; 44(24):9265-71. PubMed ID: 21090603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron hazard in an impacted estuary: Contrasting controls of plants and implications to phytoremediation.
    Ferreira AD; Queiroz HM; Otero XL; Barcellos D; Bernardino ÂF; Ferreira TO
    J Hazard Mater; 2022 Apr; 428():128216. PubMed ID: 35033915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerenchyma, gas diffusion, and catalase activity in Typha domingensis: a complementary model for radial oxygen loss.
    Duarte VP; Pereira MP; Corrêa FF; de Castro EM; Pereira FJ
    Protoplasma; 2021 Jul; 258(4):765-777. PubMed ID: 33404920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.