These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37219846)

  • 1. Phytochrome higher order mutants reveal a complex set of light responses in the moss Physcomitrium patens.
    Yuan J; Xu T; Hiltbrunner A
    New Phytol; 2023 Aug; 239(3):1035-1050. PubMed ID: 37219846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants.
    Possart A; Hiltbrunner A
    Plant Cell; 2013 Jan; 25(1):102-14. PubMed ID: 23303916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochrome diversity in green plants and the origin of canonical plant phytochromes.
    Li FW; Melkonian M; Rothfels CJ; Villarreal JC; Stevenson DW; Graham SW; Wong GK; Pryer KM; Mathews S
    Nat Commun; 2015 Jul; 6():7852. PubMed ID: 26215968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding (far-red) light on phytochrome mechanisms and responses in land plants.
    Possart A; Fleck C; Hiltbrunner A
    Plant Sci; 2014 Mar; 217-218():36-46. PubMed ID: 24467894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHYTOCHROME INTERACTING FACTORs in the moss Physcomitrella patens regulate light-controlled gene expression.
    Xu T; Yuan J; Hiltbrunner A
    Physiol Plant; 2020 Jul; 169(3):467-479. PubMed ID: 32447760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement.
    Uenaka H; Kadota A
    Plant J; 2007 Sep; 51(6):1050-61. PubMed ID: 17662030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens.
    Trogu S; Ermert AL; Stahl F; Nogué F; Gans T; Hughes J
    Plant Mol Biol; 2021 Nov; 107(4-5):327-336. PubMed ID: 33346897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis.
    Chen YR; Su YS; Tu SL
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8310-5. PubMed ID: 22566621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary origin of phytochrome responses and signaling in land plants.
    Inoue K; Nishihama R; Kohchi T
    Plant Cell Environ; 2017 Nov; 40(11):2502-2508. PubMed ID: 28098347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHYTOCHROME INTERACTING FACTORs from Physcomitrella patens are active in Arabidopsis and complement the pif quadruple mutant.
    Xu T; Hiltbrunner A
    Plant Signal Behav; 2017 Nov; 12(11):e1388975. PubMed ID: 28985148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments.
    Mathews S
    Mol Ecol; 2006 Oct; 15(12):3483-503. PubMed ID: 17032252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosses do express conventional, distantly B-type-related phytochromes. Phytochrome of Physcomitrella patens (Hedw.).
    Kolukisaoglu HU; Braun B; Martin WF; Schneider-Poetsch HA
    FEBS Lett; 1993 Nov; 334(1):95-100. PubMed ID: 8224238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens.
    Cammarata J; Roeder AHK; Scanlon MJ
    J Exp Bot; 2023 Nov; 74(21):6541-6550. PubMed ID: 37498739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome evolution in 3D: deletion, duplication, and diversification.
    Rockwell NC; Lagarias JC
    New Phytol; 2020 Mar; 225(6):2283-2300. PubMed ID: 31595505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochromes and photomorphogenesis in Arabidopsis.
    Whitelam GC; Patel S; Devlin PF
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1445-53. PubMed ID: 9800208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochrome F mediates red light responsiveness additively with phytochromes B1 and B2 in tomato.
    Balderrama D; Barnwell S; Carlson KD; Salido E; Guevara R; Nguyen C; Madlung A
    Plant Physiol; 2023 Apr; 191(4):2353-2366. PubMed ID: 36670526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-action of COP1, SPA and cryptochrome in light signal transduction and photomorphogenesis of the moss Physcomitrium patens.
    Kreiss M; Haas FB; Hansen M; Rensing SA; Hoecker U
    Plant J; 2023 Apr; 114(1):159-175. PubMed ID: 36710658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural variation in phytochrome signaling.
    Maloof JN; Borevitz JO; Weigel D; Chory J
    Semin Cell Dev Biol; 2000 Dec; 11(6):523-30. PubMed ID: 11145882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant.
    Behringer FJ; Lomax TL
    Plant Cell Environ; 1999 May; 22(5):551-8. PubMed ID: 11542247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fern Adiantum capillus-veneris phytochrome 1 comprises two native photochemical types similar to seed plant phytochrome A.
    Sineshchekov V; Koppel L; Okamoto H; Wada M
    J Photochem Photobiol B; 2014 Jan; 130():20-9. PubMed ID: 24246712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.