BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37219895)

  • 1. Automated Proteomics Workflows for High-Throughput Library Generation and Biomarker Detection Using Data-Independent Acquisition.
    Paramasivan S; Morrison JL; Lock MC; Darby JRT; Barrero RA; Mills PC; Sadowski P
    J Proteome Res; 2023 Jun; 22(6):2018-2029. PubMed ID: 37219895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging homologies for cross-species plasma proteomics in ungulates using data-independent acquisition.
    Noor Z; Paramasivan S; Ghodasara P; Chemonges S; Gupta R; Kopp S; Mills PC; Ranganathan S; Satake N; Sadowski P
    J Proteomics; 2022 Jan; 250():104384. PubMed ID: 34601153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next Generation Proteomics for Clinical Biomarker Detection Using SWATH-MS.
    Lin Q; Tan HT; Chung MCM
    Methods Mol Biol; 2019; 1977():3-15. PubMed ID: 30980318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Plasma Biomarkers from Rheumatoid Arthritis Patients Using an Optimized Sequential Window Acquisition of All THeoretical Mass Spectra (SWATH) Proteomics Workflow.
    Jin L; Wang F; Wang X; Harvey BP; Bi Y; Hu C; Cui B; Darcy AT; Maull JW; Phillips BR; Kim Y; Jenkins GJ; Sornasse TR; Tian Y
    Proteomes; 2023 Oct; 11(4):. PubMed ID: 37873874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing Cerebrospinal Fluid Proteomes to Characterize Central Nervous System Disorders: A Highly Automated Mass Spectrometry-Based Pipeline for Biomarker Discovery.
    Núñez Galindo A; Macron C; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 1959():89-112. PubMed ID: 30852817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Plasma Proteomic Profiling.
    Soni RK
    Methods Mol Biol; 2022; 2546():411-420. PubMed ID: 36127608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives.
    Hernandez-Valladares M; Bruserud Ø; Selheim F
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of sample preparation methods for label-free quantitative profiling of salivary proteome.
    Zhang X; Sadowski P; Punyadeera C
    J Proteomics; 2020 Jan; 210():103532. PubMed ID: 31629056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput.
    Macron C; Núñez Galindo A; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry.
    Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W
    J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis.
    Fu Q; Murray CI; Karpov OA; Van Eyk JE
    Mass Spectrom Rev; 2023 Mar; 42(2):873-886. PubMed ID: 34786750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications.
    Sajic T; Liu Y; Aebersold R
    Proteomics Clin Appl; 2015 Apr; 9(3-4):307-21. PubMed ID: 25504613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the SWATH-MS-workflow for label-free proteomics.
    Simbürger JMB; Dettmer K; Oefner PJ; Reinders J
    J Proteomics; 2016 Aug; 145():137-140. PubMed ID: 27107778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry.
    Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM
    Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity.
    Ctortecka C; Hartlmayr D; Seth A; Mendjan S; Tourniaire G; Udeshi ND; Carr SA; Mechtler K
    Mol Cell Proteomics; 2023 Dec; 22(12):100665. PubMed ID: 37839701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Changes in Protein Expression Using SWATH Proteomics.
    Braccia C; Liessi N; Armirotti A
    Methods Mol Biol; 2021; 2361():75-94. PubMed ID: 34236656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Independent Acquisition Enables Robust Quantification of 400 Proteins in Non-Depleted Canine Plasma.
    Ravuri HG; Noor Z; Mills PC; Satake N; Sadowski P
    Proteomes; 2022 Feb; 10(1):. PubMed ID: 35324581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal sample preparation method for proteome analysis.
    Wiśniewski JR; Zougman A; Nagaraj N; Mann M
    Nat Methods; 2009 May; 6(5):359-62. PubMed ID: 19377485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry.
    Gebreyesus ST; Siyal AA; Kitata RB; Chen ES; Enkhbayar B; Angata T; Lin KI; Chen YJ; Tu HL
    Nat Commun; 2022 Jan; 13(1):37. PubMed ID: 35013269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.