These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37220001)

  • 1. Differentiation and single-cell RNA-seq analyses of human pluripotent-stem-cell-derived renal organoids.
    Lian E; Pietrobon A; Stanford WL
    STAR Protoc; 2023 May; 4(2):102314. PubMed ID: 37220001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized protocol for analysis of neural stem proliferation in human-pluripotent-stem-cell-derived cerebral organoids.
    Tang XY; Wang D; Zhang XY; Xu M; Liu Y
    STAR Protoc; 2023 Mar; 4(2):102169. PubMed ID: 36924505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells.
    Garreta E; Moya-Rull D; Stanifer ML; Monteil V; Prado P; Marco A; Tarantino C; Gallo M; Jonsson G; Hagelkruys A; Mirazimi A; Boulant S; Penninger JM; Montserrat N
    STAR Protoc; 2022 Dec; 3(4):101872. PubMed ID: 36595951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of beta-like cells from human induced pluripotent stem cell-derived pancreatic progenitor organoids.
    Pedraza-Arevalo S; Cujba AM; Alvarez-Fallas ME; Sancho R
    STAR Protoc; 2022 Sep; 3(3):101656. PubMed ID: 36092820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for isolation and functional validation of label-retaining quiescent colorectal cancer stem cells from patient-derived organoids for RNA-seq.
    Regan JL
    STAR Protoc; 2022 Mar; 3(1):101225. PubMed ID: 35300001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol for the derivation and culture of murine trophoblast organoids for CRISPR-Cas9 screening.
    Mao Q; Jiang J; Ye Q; Wang H; Lin CP
    STAR Protoc; 2024 Dec; 5(4):103405. PubMed ID: 39427312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable generation of 3D pancreatic islet organoids from human pluripotent stem cells in suspension bioreactors.
    Pollock SD; Galicia-Silva IM; Liu M; Gruskin ZL; Alvarez-Dominguez JR
    STAR Protoc; 2023 Dec; 4(4):102580. PubMed ID: 37738117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol to generate large human intestinal organoids using a rotating bioreactor.
    Takahashi J; Sugihara HY; Kato S; Nagata S; Okamoto R; Mizutani T
    STAR Protoc; 2023 Sep; 4(3):102374. PubMed ID: 37352105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids.
    Martinez-Silgado A; Yousef Yengej FA; Puschhof J; Geurts V; Boot C; Geurts MH; Rookmaaker MB; Verhaar MC; Beumer J; Clevers H
    STAR Protoc; 2022 Sep; 3(3):101639. PubMed ID: 36042877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells.
    Sander V; Przepiorski A; Crunk AE; Hukriede NA; Holm TM; Davidson AJ
    STAR Protoc; 2020 Dec; 1(3):100150. PubMed ID: 33377044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for differentiation of functional macrophages from human induced pluripotent stem cells.
    Jeong S; Chang H; Hong SH
    STAR Protoc; 2024 Mar; 5(1):102925. PubMed ID: 38421862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol to develop force-generating human skeletal muscle organoids.
    Shahriyari M; Rinn M; Hofemeier AD; Babych A; Zimmermann WH; Tiburcy M
    STAR Protoc; 2024 Mar; 5(1):102794. PubMed ID: 38133957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of human pluripotent stem cells into pancreatic duct-like organoids.
    Breunig M; Merkle J; Melzer MK; Heller S; Seufferlein T; Meier M; Hohwieler M; Kleger A
    STAR Protoc; 2021 Dec; 2(4):100913. PubMed ID: 34917972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using human iPSC-derived kidney organoids to decipher SARS-CoV-2 pathology on single cell level.
    Reimer KC; Jansen J; Overheul GJ; Miesen P; van Rij RP; Triana SH; Smeets B; Schneider RK; Kramann R
    STAR Protoc; 2022 Sep; 3(3):101612. PubMed ID: 35983169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying differentiation of progenitor populations using cerebral organoid models for neurodevelopmental disorders.
    Schroder AL; Fairbanks-Santana M; Rakotomamonjy J; Guemez-Gamboa A
    STAR Protoc; 2024 Mar; 5(1):102904. PubMed ID: 38427568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling retinitis pigmentosa through patient-derived retinal organoids.
    Li YP; Deng WL; Jin ZB
    STAR Protoc; 2021 Jun; 2(2):100438. PubMed ID: 33899019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and validation of
    Martens YA; Xu S; Tait R; Li G; Zhao XC; Lu W; Liu CC; Kanekiyo T; Bu G; Zhao J
    STAR Protoc; 2021 Jun; 2(2):100571. PubMed ID: 34151296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of vascularized human cardiac organoids for 3D in vitro modeling.
    Voges HK; Mills RJ; Porrello ER; Hudson JE
    STAR Protoc; 2023 Sep; 4(3):102371. PubMed ID: 37384522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization.
    Anastasaki C; Wilson AF; Chen AS; Wegscheid ML; Gutmann DH
    STAR Protoc; 2022 Mar; 3(1):101173. PubMed ID: 35199037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of mouse hippocampal brain organoids from primary embryonic neural stem cells.
    Ciarpella F; Zamfir RG; Campanelli A; Pedrotti G; Di Chio M; Bottani E; Decimo I
    STAR Protoc; 2023 Sep; 4(3):102413. PubMed ID: 37454299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.