These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37220060)

  • 1. Network Robustness Prediction: Influence of Training Data Distributions.
    Lou Y; Wu C; Li J; Wang L; Chen G
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):13496-13507. PubMed ID: 37220060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Learning Convolutional Neural Network Approach for Network Robustness Prediction.
    Lou Y; Wu R; Li J; Wang L; Li X; Chen G
    IEEE Trans Cybern; 2023 Jul; 53(7):4531-4544. PubMed ID: 36215351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Network Controllability Robustness: A Convolutional Neural Network Approach.
    Lou Y; He Y; Wang L; Chen G
    IEEE Trans Cybern; 2022 May; 52(5):4052-4063. PubMed ID: 32903192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification-based prediction of network connectivity robustness.
    Lou Y; Wu R; Li J; Wang L; Tang CB; Chen G
    Neural Netw; 2023 Jan; 157():136-146. PubMed ID: 36334535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge-Based Prediction of Network Controllability Robustness.
    Lou Y; He Y; Wang L; Tsang KF; Chen G
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5739-5750. PubMed ID: 33861714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multitask Network Robustness Analysis System Based on the Graph Isomorphism Network.
    Wu C; Lou Y; Li J; Wang L; Xie S; Chen G
    IEEE Trans Cybern; 2024 Jul; PP():. PubMed ID: 39042551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
    Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F
    BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust optimization of convolutional neural networks with a uniform experiment design method: a case of phonocardiogram testing in patients with heart diseases.
    Ho WH; Huang TH; Yang PY; Chou JH; Qu JY; Chang PC; Chou FI; Tsai JT
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):92. PubMed ID: 34749632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height.
    Li X; Zhou S; Wang F; Fu L
    Sci Rep; 2024 Feb; 14(1):4560. PubMed ID: 38402324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNN-CNN: Dual Convolutional Neural Network Approach for Feature Selection and Attack Detection on Internet of Things Networks.
    Alabsi BA; Anbar M; Rihan SDA
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate multi-objective prediction of CO
    Wu F; He J; Cai L; Du M; Huang M
    J Environ Manage; 2023 Jul; 337():117759. PubMed ID: 36948144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network.
    Su R; Song J; Wang Z; Mao S; Mao Y; Wu X; Hou M
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1037-1048. PubMed ID: 36097771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Generalizability of Time-of-Flight Convolutional Neural Networks for Noninvasive Acoustic Measurements.
    Saini A; Greenhall JJ; Davis ES; Pantea C
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-whitened matched filter and convolutional neural network based model observer performance for mass lesion detection in non-contrast breast CT.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2023 Dec; 50(12):7558-7567. PubMed ID: 37646463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size.
    Ladefoged CN; Hansen AE; Henriksen OM; Bruun FJ; Eikenes L; Øen SK; Karlberg A; Højgaard L; Law I; Andersen FL
    Neuroimage; 2020 Nov; 222():117221. PubMed ID: 32750498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Brain Age of Healthy Adults Based on Structural MRI Parcellation Using Convolutional Neural Networks.
    Jiang H; Lu N; Chen K; Yao L; Li K; Zhang J; Guo X
    Front Neurol; 2019; 10():1346. PubMed ID: 31969858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.