These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37220424)

  • 1. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches.
    Zhu J; Tivony R; Bošković F; Pereira-Dias J; Sandler SE; Baker S; Keyser UF
    J Am Chem Soc; 2023 Jun; 145(22):12115-12123. PubMed ID: 37220424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable DNA Nanoswitch Sensing with Solid-State Nanopores.
    Beamish E; Tabard-Cossa V; Godin M
    ACS Sens; 2019 Sep; 4(9):2458-2464. PubMed ID: 31449750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Split G-Quadruplexes Enhance Nanopore Signals for Simultaneous Identification of Multiple Nucleic Acids.
    Zhu J; Bošković F; Keyser UF
    Nano Lett; 2022 Jun; 22(12):4993-4998. PubMed ID: 35730196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopore extended field-effect transistor for selective single-molecule biosensing.
    Ren R; Zhang Y; Nadappuram BP; Akpinar B; Klenerman D; Ivanov AP; Edel JB; Korchev Y
    Nat Commun; 2017 Sep; 8(1):586. PubMed ID: 28928405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA nanotechnology assisted nanopore-based analysis.
    Ding T; Yang J; Pan V; Zhao N; Lu Z; Ke Y; Zhang C
    Nucleic Acids Res; 2020 Apr; 48(6):2791-2806. PubMed ID: 32083656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed Continuous Biosensing by Single-Molecule Encoded Nanoswitches.
    Lubken RM; de Jong AM; Prins MWJ
    Nano Lett; 2020 Apr; 20(4):2296-2302. PubMed ID: 32091908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed DNA Identification Using Site Specific dCas9 Barcodes and Nanopore Sensing.
    Weckman NE; Ermann N; Gutierrez R; Chen K; Graham J; Tivony R; Heron A; Keyser UF
    ACS Sens; 2019 Aug; 4(8):2065-2072. PubMed ID: 31340637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.
    Bell NA; Keyser UF
    Nat Nanotechnol; 2016 Jul; 11(7):645-51. PubMed ID: 27043197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Characterization of DNA-Protein Interactions Using Nanopore Biosensors.
    Squires AH; Gilboa T; Torfstein C; Varongchayakul N; Meller A
    Methods Enzymol; 2017; 582():353-385. PubMed ID: 28062042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers.
    Sze JYY; Ivanov AP; Cass AEG; Edel JB
    Nat Commun; 2017 Nov; 8(1):1552. PubMed ID: 29146902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecule electro-optical binding assay using nanopores.
    Cai S; Sze JYY; Ivanov AP; Edel JB
    Nat Commun; 2019 Apr; 10(1):1797. PubMed ID: 30996223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop-Mediated Isothermal Amplification-Coupled Glass Nanopore Counting Toward Sensitive and Specific Nucleic Acid Testing.
    Tang Z; Choi G; Nouri R; Guan W
    Nano Lett; 2019 Nov; 19(11):7927-7934. PubMed ID: 31657939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Annealing Restructures RNA for Nanopore Detection.
    Platnich CM; Earle MK; Keyser UF
    J Am Chem Soc; 2024 May; 146(19):12919-12924. PubMed ID: 38691627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 via barcoded DNA nanostructures in solid-state nanopores.
    Sandler SE; Weckman NE; Yorke S; Das A; Chen K; Gutierrez R; Keyser UF
    Nat Biomed Eng; 2024 Mar; 8(3):325-334. PubMed ID: 37550424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Utility of Nanopore Technology for Protein and Peptide Sensing.
    Robertson JWF; Reiner JE
    Proteomics; 2018 Sep; 18(18):e1800026. PubMed ID: 29952121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and unzipping behavior of dumbbell and hairpin DNA revealed by real-time nanopore sensing.
    Li X; Song G; Dou L; Yan S; Zhang M; Yuan W; Lai S; Jiang X; Li K; Sun K; Zhao C; Geng J
    Nanoscale; 2021 Jul; 13(27):11827-11835. PubMed ID: 34152351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-fidelity biosensing of dNTPs and nucleic acids by controllable subnanometer channel PaMscS.
    Zhao C; Li K; Mou X; Zhu Y; Chen C; Zhang M; Wang Y; Zhou K; Sheng Y; Liu H; Bai Y; Li X; Zhou C; Deng D; Wu J; Wu HC; Bao R; Geng J
    Biosens Bioelectron; 2022 Mar; 200():113894. PubMed ID: 34973563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel DNA circuits by autocatalytic strand displacement and nanopore readout.
    Zhu J; Kong J; Keyser UF; Wang E
    Nanoscale; 2022 Oct; 14(41):15507-15515. PubMed ID: 36227155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single molecule based SNP detection using designed DNA carriers and solid-state nanopores.
    Kong J; Zhu J; Keyser UF
    Chem Commun (Camb); 2016 Dec; 53(2):436-439. PubMed ID: 27965988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.