These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 37221090)
21. Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping. Bien N; Sack AT Neuroimage; 2014 Jul; 94():231-238. PubMed ID: 24636879 [TBL] [Abstract][Full Text] [Related]
22. The influence of hand posture on tactile processing: Evidence from a 7T functional magnetic resonance imaging study. Ambron E; Garcea FE; Cason S; Medina J; Detre JA; Coslett HB Cortex; 2024 Apr; 173():138-149. PubMed ID: 38394974 [TBL] [Abstract][Full Text] [Related]
23. Dynamic causal modeling suggests serial processing of tactile vibratory stimuli in the human somatosensory cortex--an fMRI study. Kalberlah C; Villringer A; Pleger B Neuroimage; 2013 Jul; 74():164-71. PubMed ID: 23435215 [TBL] [Abstract][Full Text] [Related]
24. Neural encoding of actual and imagined touch within human posterior parietal cortex. Chivukula S; Zhang CY; Aflalo T; Jafari M; Pejsa K; Pouratian N; Andersen RA Elife; 2021 Mar; 10():. PubMed ID: 33647233 [TBL] [Abstract][Full Text] [Related]
25. Spatial resolution of fMRI in the human parasylvian cortex: comparison of somatosensory and auditory activation. Ozcan M; Baumgärtner U; Vucurevic G; Stoeter P; Treede RD Neuroimage; 2005 Apr; 25(3):877-87. PubMed ID: 15808988 [TBL] [Abstract][Full Text] [Related]
26. Distinct fine-scale fMRI activation patterns of contra- and ipsilateral somatosensory areas 3b and 1 in humans. Ann Stringer E; Qiao PG; Friedman RM; Holroyd L; Newton AT; Gore JC; Min Chen L Hum Brain Mapp; 2014 Sep; 35(9):4841-57. PubMed ID: 24692215 [TBL] [Abstract][Full Text] [Related]
27. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study. Akselrod M; Martuzzi R; Serino A; van der Zwaag W; Gassert R; Blanke O Neuroimage; 2017 Oct; 159():473-487. PubMed ID: 28629975 [TBL] [Abstract][Full Text] [Related]
28. Brain-based decoding of mentally imagined film clips and sounds reveals experience-based information patterns in film professionals. de Borst AW; Valente G; Jääskeläinen IP; Tikka P Neuroimage; 2016 Apr; 129():428-438. PubMed ID: 26826515 [TBL] [Abstract][Full Text] [Related]
29. Involvement of human primary somatosensory cortex in vibrotactile detection depends on task demand. Tamè L; Holmes NP Neuroimage; 2016 Sep; 138():184-196. PubMed ID: 27233148 [TBL] [Abstract][Full Text] [Related]
30. Brain networks underlying conscious tactile perception of textures as revealed using the velvet hand illusion. Rajaei N; Aoki N; Takahashi HK; Miyaoka T; Kochiyama T; Ohka M; Sadato N; Kitada R Hum Brain Mapp; 2018 Dec; 39(12):4787-4801. PubMed ID: 30096223 [TBL] [Abstract][Full Text] [Related]
31. Shared neural representations of tactile roughness intensities by somatosensation and touch observation using an associative learning method. Kim J; Bülthoff I; Kim SP; Bülthoff HH Sci Rep; 2019 Jan; 9(1):77. PubMed ID: 30635598 [TBL] [Abstract][Full Text] [Related]
32. Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization. Thees S; Blankenburg F; Taskin B; Curio G; Villringer A Neuroimage; 2003 Mar; 18(3):707-19. PubMed ID: 12667848 [TBL] [Abstract][Full Text] [Related]
33. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: A study of dynamic causal modeling of fMRI data. Song Y; Su Q; Yang Q; Zhao R; Yin G; Qin W; Iannetti GD; Yu C; Liang M Neuroimage; 2021 Jul; 234():117957. PubMed ID: 33744457 [TBL] [Abstract][Full Text] [Related]
34. fMRI reflects functional connectivity of human somatosensory cortex. Blatow M; Nennig E; Durst A; Sartor K; Stippich C Neuroimage; 2007 Sep; 37(3):927-36. PubMed ID: 17629500 [TBL] [Abstract][Full Text] [Related]
35. Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs. Besle J; Sánchez-Panchuelo RM; Bowtell R; Francis S; Schluppeck D J Neurophysiol; 2013 May; 109(9):2293-305. PubMed ID: 23427300 [TBL] [Abstract][Full Text] [Related]
36. Multisensory activation of the intraparietal area when classifying grating orientation: a functional magnetic resonance imaging study. Kitada R; Kito T; Saito DN; Kochiyama T; Matsumura M; Sadato N; Lederman SJ J Neurosci; 2006 Jul; 26(28):7491-501. PubMed ID: 16837597 [TBL] [Abstract][Full Text] [Related]
37. Neural Representations in Visual and Parietal Cortex Differentiate between Imagined, Perceived, and Illusory Experiences. Li S; Zeng X; Shao Z; Yu Q J Neurosci; 2023 Sep; 43(38):6508-6524. PubMed ID: 37582626 [TBL] [Abstract][Full Text] [Related]
38. Tactile stimulus predictability modulates activity in a tactile-motor cortical network. Nelson AJ; Staines WR; McIlroy WE Exp Brain Res; 2004 Jan; 154(1):22-32. PubMed ID: 14574427 [TBL] [Abstract][Full Text] [Related]
39. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation. Chan AW; Baker CI J Neurosci; 2015 Jan; 35(4):1468-80. PubMed ID: 25632124 [TBL] [Abstract][Full Text] [Related]
40. Semantic and emotional content of imagined representations in human occipitotemporal cortex. Mitchell DJ; Cusack R Sci Rep; 2016 Feb; 6():20232. PubMed ID: 26839123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]