These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37221097)

  • 1. Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study.
    Konjusha A; Yu S; Mückschel M; Colzato L; Ziemssen T; Beste C
    J Neurosci; 2023 Jun; 43(25):4709-4724. PubMed ID: 37221097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auricular Transcutaneous Vagus Nerve Stimulation Diminishes Alpha-Band-Related Inhibitory Gating Processes During Conflict Monitoring in Frontal Cortices.
    Konjusha A; Colzato L; Mückschel M; Beste C
    Int J Neuropsychopharmacol; 2022 Jun; 25(6):457-467. PubMed ID: 35137108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory control in WM gate-opening: Insights from alpha desynchronization and norepinephrine activity under atDCS stimulation.
    Yu S; Konjusha A; Ziemssen T; Beste C
    Neuroimage; 2024 Apr; 289():120541. PubMed ID: 38360384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-On-Task Effects on Working Memory Gating Processes-A Role of Theta Synchronization and the Norepinephrine System.
    Yu S; Mückschel M; Rempel S; Ziemssen T; Beste C
    Cereb Cortex Commun; 2022; 3(1):tgac001. PubMed ID: 35098128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory Correlates of Control over Working Memory Gating and Updating: An EEG Study Using the Reference-back Paradigm.
    Rac-Lubashevsky R; Kessler Y
    J Cogn Neurosci; 2018 Dec; 30(12):1870-1882. PubMed ID: 30125218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing Multiple Coding Levels in Theta Band Activity During Working Memory Gating Processes.
    Rempel S; Colzato L; Zhang W; Wolff N; Mückschel M; Beste C
    Neuroscience; 2021 Dec; 478():11-23. PubMed ID: 34626750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations.
    Sharon O; Fahoum F; Nir Y
    J Neurosci; 2021 Jan; 41(2):320-330. PubMed ID: 33214317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model.
    Vázquez-Oliver A; Brambilla-Pisoni C; Domingo-Gainza M; Maldonado R; Ivorra A; Ozaita A
    Brain Stimul; 2020; 13(2):494-498. PubMed ID: 31919001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ventral stream-prefrontal cortex processing cascade enables working memory gating dynamics.
    Yu S; Rempel S; Gholamipourbarogh N; Beste C
    Commun Biol; 2022 Oct; 5(1):1086. PubMed ID: 36224253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses.
    Wienke C; Grueschow M; Haghikia A; Zaehle T
    J Neurosci; 2023 Sep; 43(36):6306-6319. PubMed ID: 37591736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Neural Correlates of Updating and Gating in Procedural Working Memory.
    Nir-Cohen G; Egner T; Kessler Y
    J Cogn Neurosci; 2023 Jun; 35(6):919-940. PubMed ID: 36976906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Substrates of Working Memory Updating.
    Nir-Cohen G; Kessler Y; Egner T
    J Cogn Neurosci; 2020 Dec; 32(12):2285-2302. PubMed ID: 32897122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposing the n-back task: An individual differences study using the reference-back paradigm.
    Rac-Lubashevsky R; Kessler Y
    Neuropsychologia; 2016 Sep; 90():190-9. PubMed ID: 27425422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auricular Transcutaneous Vagus Nerve Stimulation Acutely Modulates Brain Connectivity in Mice.
    Brambilla-Pisoni C; Muñoz-Moreno E; Gallego-Amaro I; Maldonado R; Ivorra A; Soria G; Ozaita A
    Front Cell Neurosci; 2022; 16():856855. PubMed ID: 35548372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-prioritization in working memory gating.
    van Dooren R; Jongkees BJ; Sellaro R
    Atten Percept Psychophys; 2024 Mar; ():. PubMed ID: 38491316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auricular transcutaneous vagus nerve stimulation for alcohol use disorder: A chance to improve treatment?
    Konjusha A; Colzato L; Ghin F; Stock AK; Beste C
    Addict Biol; 2022 Sep; 27(5):e13202. PubMed ID: 36001426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: A report of three studies.
    Burger AM; Van der Does W; Brosschot JF; Verkuil B
    Biol Psychol; 2020 Apr; 152():107863. PubMed ID: 32050095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential.
    Warren CM; Tona KD; Ouwerkerk L; van Paridon J; Poletiek F; van Steenbergen H; Bosch JA; Nieuwenhuis S
    Brain Stimul; 2019; 12(3):635-642. PubMed ID: 30591360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural system for updating object working memory from different sources: sensory stimuli or long-term memory.
    Roth JK; Courtney SM
    Neuroimage; 2007 Nov; 38(3):617-30. PubMed ID: 17888688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control - A Study Using Transcutaneous Vagus Nerve Stimulation.
    Beste C; Steenbergen L; Sellaro R; Grigoriadou S; Zhang R; Chmielewski W; Stock AK; Colzato L
    Brain Stimul; 2016; 9(6):811-818. PubMed ID: 27522167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.