These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37221141)

  • 1. Instability of inverse probability weighting methods and a remedy for nonignorable missing data.
    Li P; Qin J; Liu Y
    Biometrics; 2023 Dec; 79(4):3215-3226. PubMed ID: 37221141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
    Xie Y; Zhang B
    Int J Biostat; 2017 Apr; 13(1):. PubMed ID: 28441139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of predictive model performance of an existing model in the presence of missing data.
    Li P; Taylor JMG; Spratt DE; Karnes RJ; Schipper MJ
    Stat Med; 2021 Jul; 40(15):3477-3498. PubMed ID: 33843085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained empirical-likelihood confidence regions in nonignorable covariate-missing data problems.
    Xie Y; Zhang B
    Stat Med; 2019 Feb; 38(3):452-479. PubMed ID: 30311246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype.
    Guo F; Langworthy B; Ogino S; Wang M
    Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On variance estimation of target population created by inverse probability weighting.
    Chen J; Chen R; Feng Y; Tan M; Chen P; Wu Y
    J Biopharm Stat; 2024 Aug; 34(5):661-679. PubMed ID: 37621147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
    Liu D; Yeung EH; McLain AC; Xie Y; Buck Louis GM; Sundaram R
    Paediatr Perinat Epidemiol; 2017 Sep; 31(5):468-478. PubMed ID: 28767145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint.
    Middleton M; Nguyen C; Carlin JB; Moreno-Betancur M; Lee KJ
    BMC Med Res Methodol; 2023 Dec; 23(1):287. PubMed ID: 38062377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse probability weighting methods for Cox regression with right-truncated data.
    Vakulenko-Lagun B; Mandel M; Betensky RA
    Biometrics; 2020 Jun; 76(2):484-495. PubMed ID: 31621059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonparametric multiple imputation approach for missing categorical data.
    Zhou M; He Y; Yu M; Hsu CH
    BMC Med Res Methodol; 2017 Jun; 17(1):87. PubMed ID: 28587662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes.
    Prague M; Wang R; Stephens A; Tchetgen Tchetgen E; DeGruttola V
    Biometrics; 2016 Dec; 72(4):1066-1077. PubMed ID: 27060877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving upon the efficiency of complete case analysis when covariates are MNAR.
    Bartlett JW; Carpenter JR; Tilling K; Vansteelandt S
    Biostatistics; 2014 Oct; 15(4):719-30. PubMed ID: 24907708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Goodness-of-fit tests for a logistic regression model with missing covariates.
    Lee SM; Tran PL; Li CS
    Stat Methods Med Res; 2022 Jun; 31(6):1031-1050. PubMed ID: 35345942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of inverse probability weighting for dealing with missing data.
    Seaman SR; White IR
    Stat Methods Med Res; 2013 Jun; 22(3):278-95. PubMed ID: 21220355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating equations with nonignorably missing response data.
    Wang YG
    Biometrics; 1999 Sep; 55(3):984-9. PubMed ID: 11315039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model misspecification and bias for inverse probability weighting estimators of average causal effects.
    Waernbaum I; Pazzagli L
    Biom J; 2023 Feb; 65(2):e2100118. PubMed ID: 36045099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data.
    Sun B; Perkins NJ; Cole SR; Harel O; Mitchell EM; Schisterman EF; Tchetgen Tchetgen EJ
    Am J Epidemiol; 2018 Mar; 187(3):585-591. PubMed ID: 29165557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propensity score analysis with partially observed covariates: How should multiple imputation be used?
    Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ
    Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample size calculation for randomized trials via inverse probability of response weighting when outcome data are missing at random.
    Harrison LJ; Wang R
    Stat Med; 2023 May; 42(11):1802-1821. PubMed ID: 36880120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian Latent Variable Selection Model for Nonignorable Missingness.
    Du H; Enders C; Keller BT; Bradbury TN; Karney BR
    Multivariate Behav Res; 2022; 57(2-3):478-512. PubMed ID: 33529056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.