These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37221184)

  • 81. Strong pressure dependence of the magnetic penetration depth in single crystals of the heavy-fermion superconductor CeCoIn5 studied by muon spin rotation.
    Howald L; Maisuradze A; de Réotier PD; Yaouanc A; Baines C; Lapertot G; Mony K; Brison JP; Keller H
    Phys Rev Lett; 2013 Jan; 110(1):017005. PubMed ID: 23383830
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering.
    Bachmann MD; Nair N; Flicker F; Ilan R; Meng T; Ghimire NJ; Bauer ED; Ronning F; Analytis JG; Moll PJW
    Sci Adv; 2017 May; 3(5):e1602983. PubMed ID: 28560340
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Symmetry protected topological Luttinger liquids and the phase transition between them.
    Jiang HC; Li ZX; Seidel A; Lee DH
    Sci Bull (Beijing); 2018 Jun; 63(12):753-758. PubMed ID: 36658948
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Route to Topological Superconductivity via Magnetic Field Rotation.
    Loder F; Kampf AP; Kopp T
    Sci Rep; 2015 Oct; 5():15302. PubMed ID: 26477669
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Coexistence of Bulk-Nodal and Surface-Nodeless Cooper Pairings in a Superconducting Dirac Semimetal.
    Yang XP; Zhong Y; Mardanya S; Cochran TA; Chapai R; Mine A; Zhang J; Sánchez-Barriga J; Cheng ZJ; Clark OJ; Yin JX; Blawat J; Cheng G; Belopolski I; Nagashima T; Najafzadeh S; Gao S; Yao N; Bansil A; Jin R; Chang TR; Shin S; Okazaki K; Hasan MZ
    Phys Rev Lett; 2023 Jan; 130(4):046402. PubMed ID: 36763428
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Enhancement and reentrance of spin triplet superconductivity in UTe
    Ran S; Kim H; Liu IL; Saha SR; Hayes I; Metz T; Eo YS; Paglione J; Butch NP
    Phys Rev B; 2020 Apr; 101(14):. PubMed ID: 34131608
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Soliton defects and topological [Formula: see text]-periodic superconductivity from an orbital magnetic field effect in edge Josephson junctions.
    Tkachov G
    J Phys Condens Matter; 2019 May; 31(17):175301. PubMed ID: 30703757
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Topological Superconductivity on the Surface of Fe-Based Superconductors.
    Xu G; Lian B; Tang P; Qi XL; Zhang SC
    Phys Rev Lett; 2016 Jul; 117(4):047001. PubMed ID: 27494494
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Superconductivity. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt₃.
    Schemm ER; Gannon WJ; Wishne CM; Halperin WP; Kapitulnik A
    Science; 2014 Jul; 345(6193):190-3. PubMed ID: 25013069
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chiral kagome superconductivity modulations with residual Fermi arcs.
    Deng H; Qin H; Liu G; Yang T; Fu R; Zhang Z; Wu X; Wang Z; Shi Y; Liu J; Liu H; Yan XY; Song W; Xu X; Zhao Y; Yi M; Xu G; Hohmann H; Holbæk SC; Dürrnagel M; Zhou S; Chang G; Yao Y; Wang Q; Guguchia Z; Neupert T; Thomale R; Fischer MH; Yin JX
    Nature; 2024 Aug; 632(8026):775-781. PubMed ID: 39169248
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Time-reversal symmetry-breaking superconductivity in heavy-fermion PrOs4Sb12 detected by muon-spin relaxation.
    Aoki Y; Tsuchiya A; Kanayama T; Saha SR; Sugawara H; Sato H; Higemoto W; Koda A; Ohishi K; Nishiyama K; Kadono R
    Phys Rev Lett; 2003 Aug; 91(6):067003. PubMed ID: 12935103
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5.
    Van Dyke JS; Massee F; Allan MP; Davis JC; Petrovic C; Morr DK
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11663-7. PubMed ID: 25062692
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Quasiparticles in condensed matter systems.
    Wölfle P
    Rep Prog Phys; 2018 Mar; 81(3):032501. PubMed ID: 29155414
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Spin-triplet superconductivity in K
    Yang J; Luo J; Yi C; Shi Y; Zhou Y; Zheng GQ
    Sci Adv; 2021 Dec; 7(52):eabl4432. PubMed ID: 34936458
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Weyl Fermions and broken symmetry phases of laterally confined
    Wu H; Sauls JA
    J Phys Condens Matter; 2023 Sep; 35(49):. PubMed ID: 37625425
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Generic new platform for topological quantum computation using semiconductor heterostructures.
    Sau JD; Lutchyn RM; Tewari S; Das Sarma S
    Phys Rev Lett; 2010 Jan; 104(4):040502. PubMed ID: 20366693
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors.
    He JJ; Wu J; Choy TP; Liu XJ; Tanaka Y; Law KT
    Nat Commun; 2014; 5():3232. PubMed ID: 24492649
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A zero-dimensional topologically nontrivial state in a superconducting quantum dot.
    Marra P; Braggio A; Citro R
    Beilstein J Nanotechnol; 2018; 9():1705-1714. PubMed ID: 29977704
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Multiple Chiral Majorana Fermion Modes and Quantum Transport.
    Wang J; Lian B
    Phys Rev Lett; 2018 Dec; 121(25):256801. PubMed ID: 30608855
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Odd-frequency superconductivity induced in topological insulators with and without hexagonal warping.
    Vasenko AS; Golubov AA; Silkin VM; Chulkov EV
    J Phys Condens Matter; 2017 Jul; 29(29):295502. PubMed ID: 28557795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.