These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3722128)

  • 1. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.
    Krueger RD; Harper SH; Campbell JW; Fahrney DE
    J Bacteriol; 1986 Jul; 167(1):49-56. PubMed ID: 3722128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.
    Seely RJ; Fahrney DE
    J Bacteriol; 1984 Oct; 160(1):50-4. PubMed ID: 6480564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic-2,3-diphosphoglycerate levels in Methanobacterium thermoautotrophicum reflect inorganic phosphate availability.
    Seely RJ; Krueger RD; Fahrney DE
    Biochem Biophys Res Commun; 1983 Nov; 116(3):1125-8. PubMed ID: 6651843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turnover of cyclic 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Phosphate flux in P1- and H2-limited chemostat cultures.
    Krueger RD; Campbell JW; Fahrney DE
    J Biol Chem; 1986 Sep; 261(26):11945-8. PubMed ID: 3745174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic degradation of cyclic 2,3-diphosphoglycerate to 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum.
    Sastry MV; Robertson DE; Moynihan JA; Roberts MF
    Biochemistry; 1992 Mar; 31(11):2926-35. PubMed ID: 1550819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H.
    Gorkovenko A; Roberts MF
    J Bacteriol; 1993 Jul; 175(13):4087-95. PubMed ID: 8320225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg.
    Ciulla R; Clougherty C; Belay N; Krishnan S; Zhou C; Byrd D; Roberts MF
    J Bacteriol; 1994 Jun; 176(11):3177-87. PubMed ID: 8195071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum.
    Schönheit P; Moll J; Thauer RK
    Arch Microbiol; 1979 Oct; 123(1):105-7. PubMed ID: 120728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous culture of Rhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited growth.
    Button DK; Dunker SS; Morse ML
    J Bacteriol; 1973 Feb; 113(2):599-611. PubMed ID: 4690960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of cyclic 2,3-diphosphoglycerate. Isolation and characterization of 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase from Methanothermus fervidus.
    Lehmacher A; Vogt AB; Hensel R
    FEBS Lett; 1990 Oct; 272(1-2):94-8. PubMed ID: 2226838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-affinity potassium uptake system in the archaeon Methanobacterium thermoautotrophicum: overproduction of a 31-kilodalton membrane protein during growth on low-potassium medium.
    Glasemacher J; Siebers A; Altendorf K; Schönheit P
    J Bacteriol; 1996 Feb; 178(3):728-34. PubMed ID: 8550507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [31P-NMR study of kinetics of 2,3-diphosphoglycerate degradation in human erythrocytes during their depletion].
    Ataullakhanov FI; Vitvitskiĭ VM; Dubinskaia EI; Dubinskiĭ VZ
    Biokhimiia; 1985 Aug; 50(8):1319-22. PubMed ID: 4074797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic phosphate accelerates hemoglobin A1c synthesis.
    Kunika K; Itakura M; Yamashita K
    Life Sci; 1989; 45(7):623-30. PubMed ID: 2770417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism.
    Shoemaker DG; Bender CA; Gunn RB
    J Gen Physiol; 1988 Oct; 92(4):449-74. PubMed ID: 3204363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 2,3-diphosphoglycerate metabolism between fetal and postnatal pig red cells.
    Watts RP; Kim HD
    Biol Neonate; 1984; 45(6):280-8. PubMed ID: 6733169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of blood 2,3-diphosphoglycerate levels in multi-transfused patients: effect of organic and inorganic phosphate.
    Iapichino G; Radrizzani D; Solca M; Franzosi MG; Pallavicini FB; Spina G; Scherini A
    Int Surg; 1984; 69(2):113-6. PubMed ID: 6500874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of Control in Inorganic Phosphate Uptake by Catharanthus roseus (L.) G. Don Cells (Cytoplasmic Inorganic Phosphate Homeostasis Depends on the Tonoplast Inorganic Phosphate Transport System?).
    Sakano K; Yazaki Y; Okihara K; Mimura T; Kiyota S
    Plant Physiol; 1995 May; 108(1):295-302. PubMed ID: 12228474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding of physiologically significant protons to 2,3-diphosphoglycerate.
    Hobish MK; Powers DA
    Biophys Chem; 1983 Nov; 18(4):407-11. PubMed ID: 6318845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.