These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37221543)
21. Induced Pluripotent Stem Cell-Derived Neural Precursors Improve Memory, Synaptic and Pathological Abnormalities in a Mouse Model of Alzheimer's Disease. Armijo E; Edwards G; Flores A; Vera J; Shahnawaz M; Moda F; Gonzalez C; Sanhueza M; Soto C Cells; 2021 Jul; 10(7):. PubMed ID: 34359972 [TBL] [Abstract][Full Text] [Related]
22. Pathological manifestation of the induced pluripotent stem cell-derived cortical neurons from an early-onset Alzheimer's disease patient carrying a presenilin-1 mutation (S170F). Li L; Kim HJ; Roh JH; Kim M; Koh W; Kim Y; Heo H; Chung J; Nakanishi M; Yoon T; Hong CP; Seo SW; Na DL; Song J Cell Prolif; 2020 Apr; 53(4):e12798. PubMed ID: 32216003 [TBL] [Abstract][Full Text] [Related]
23. A Simple Differentiation Protocol for Generation of Induced Pluripotent Stem Cell-Derived Basal Forebrain-Like Cholinergic Neurons for Alzheimer's Disease and Frontotemporal Dementia Disease Modeling. Muñoz SS; Engel M; Balez R; Do-Ha D; Cabral-da-Silva MC; Hernández D; Berg T; Fifita JA; Grima N; Yang S; Blair IP; Nicholson G; Cook AL; Hewitt AW; Pébay A; Ooi L Cells; 2020 Sep; 9(9):. PubMed ID: 32887382 [TBL] [Abstract][Full Text] [Related]
24. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285 [TBL] [Abstract][Full Text] [Related]
26. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Gu Q; Tomaskovic-Crook E; Wallace GG; Crook JM Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28544655 [TBL] [Abstract][Full Text] [Related]
27. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks. Hirano M; Huang Y; Vela Jarquin D; De la Garza Hernández RL; Jodat YA; Luna Cerón E; García-Rivera LE; Shin SR Biofabrication; 2021 Jun; 13(3):. PubMed ID: 33962404 [TBL] [Abstract][Full Text] [Related]
28. Neural Differentiation of Induced Pluripotent Stem Cells for a Xenogeneic Material-Free 3D Neurological Disease Model Neurulation from Pluripotent Cells Using a Human Hydrogel. Valerio LSA; Carrick FR; Bedoya L; Sreerama S; Sugaya K Curr Issues Mol Biol; 2023 May; 45(6):4574-4588. PubMed ID: 37367039 [TBL] [Abstract][Full Text] [Related]
29. Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Zheng WH; Bastianetto S; Mennicken F; Ma W; Kar S Neuroscience; 2002; 115(1):201-11. PubMed ID: 12401334 [TBL] [Abstract][Full Text] [Related]
30. Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer's disease. Ooi L; Sidhu K; Poljak A; Sutherland G; O'Connor MD; Sachdev P; Münch G J Neural Transm (Vienna); 2013 Jan; 120(1):103-11. PubMed ID: 22695755 [TBL] [Abstract][Full Text] [Related]
31. Human iPSC application in Alzheimer's disease and Tau-related neurodegenerative diseases. Tcw J Neurosci Lett; 2019 Apr; 699():31-40. PubMed ID: 30685408 [TBL] [Abstract][Full Text] [Related]
32. Three-Dimensional Bioprinted Hyaluronic Acid Hydrogel Test Beds for Assessing Neural Cell Responses to Competitive Growth Stimuli. Ngo TB; Spearman BS; Hlavac N; Schmidt CE ACS Biomater Sci Eng; 2020 Dec; 6(12):6819-6830. PubMed ID: 33320621 [TBL] [Abstract][Full Text] [Related]
33. Nanoparticle-Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs. Tao J; Zhu S; Zhou N; Wang Y; Wan H; Zhang L; Tang Y; Pan Y; Yang Y; Zhang J; Liu R Adv Healthc Mater; 2022 Jun; 11(12):e2102810. PubMed ID: 35194975 [TBL] [Abstract][Full Text] [Related]
34. Bioprinting for Neural Tissue Engineering. Knowlton S; Anand S; Shah T; Tasoglu S Trends Neurosci; 2018 Jan; 41(1):31-46. PubMed ID: 29223312 [TBL] [Abstract][Full Text] [Related]
35. Modeling amyloid beta and tau pathology in human cerebral organoids. Gonzalez C; Armijo E; Bravo-Alegria J; Becerra-Calixto A; Mays CE; Soto C Mol Psychiatry; 2018 Dec; 23(12):2363-2374. PubMed ID: 30171212 [TBL] [Abstract][Full Text] [Related]
36. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
37. 3D Bioprinted Multicellular Vascular Models. Gold KA; Saha B; Rajeeva Pandian NK; Walther BK; Palma JA; Jo J; Cooke JP; Jain A; Gaharwar AK Adv Healthc Mater; 2021 Nov; 10(21):e2101141. PubMed ID: 34310082 [TBL] [Abstract][Full Text] [Related]
38. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. Hossini AM; Megges M; Prigione A; Lichtner B; Toliat MR; Wruck W; Schröter F; Nuernberg P; Kroll H; Makrantonaki E; Zouboulis CC; Adjaye J BMC Genomics; 2015 Feb; 16(1):84. PubMed ID: 25765079 [TBL] [Abstract][Full Text] [Related]
39. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Yan Y; Song L; Bejoy J; Zhao J; Kanekiyo T; Bu G; Zhou Y; Li Y Tissue Eng Part A; 2018 Jul; 24(13-14):1125-1137. PubMed ID: 29361890 [TBL] [Abstract][Full Text] [Related]