These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37221709)

  • 1. Afterpulse effects in quantum key distribution without monitoring signal disturbance.
    Liu H; Yin ZQ; Wang ZH; Shan YG; Wang S; Chen W; Dong C; Guo GC; Han ZF
    Opt Lett; 2023 Apr; 48(7):1558-1561. PubMed ID: 37221709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance.
    Wang R; Yin ZQ; Wang S; Chen W; Guo GC; Han ZF
    Opt Lett; 2018 Sep; 43(17):4228-4231. PubMed ID: 30160758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plug-and-play round-robin differential phase-shift quantum key distribution.
    Mao QP; Wang L; Zhao SM
    Sci Rep; 2017 Nov; 7(1):15435. PubMed ID: 29133835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.
    Liu L; Guo FZ; Qin SJ; Wen QY
    Sci Rep; 2017 Feb; 7():42261. PubMed ID: 28198808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-key analysis for round-robin-differential-phase-shift quantum key distribution.
    Liu H; Yin ZQ; Wang R; Lu FY; Wang S; Chen W; Huang W; Xu BJ; Guo GC; Han ZF
    Opt Express; 2020 May; 28(10):15416-15423. PubMed ID: 32403569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental passive round-robin differential phase-shift quantum key distribution.
    Guan JY; Cao Z; Liu Y; Shen-Tu GL; Pelc JS; Fejer MM; Peng CZ; Ma X; Zhang Q; Pan JW
    Phys Rev Lett; 2015 May; 114(18):180502. PubMed ID: 26000991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved security bound for the round-robin-differential-phase-shift quantum key distribution.
    Yin ZQ; Wang S; Chen W; Han YG; Wang R; Guo GC; Han ZF
    Nat Commun; 2018 Jan; 9(1):457. PubMed ID: 29386505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical round-robin differential phase-shift quantum key distribution.
    Zhang YY; Bao WS; Zhou C; Li HW; Wang Y; Jiang MS
    Opt Express; 2016 Sep; 24(18):20763-73. PubMed ID: 27607679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afterpulse effect in measurement-device-independent quantum key distribution.
    Wang ZH; Wang S; Fan-Yuan GJ; Lu FY; Yin ZQ; Chen W; He DY; Guo GC; Han ZF
    Opt Express; 2022 Aug; 30(16):28534-28549. PubMed ID: 36299046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system.
    Fujiwara M; Tanaka A; Takahashi S; Yoshino K; Nambu Y; Tajima A; Miki S; Yamashita T; Wang Z; Tomita A; Sasaki M
    Opt Express; 2011 Sep; 19(20):19562-71. PubMed ID: 21996897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical quantum key distribution protocol without monitoring signal disturbance.
    Sasaki T; Yamamoto Y; Koashi M
    Nature; 2014 May; 509(7501):475-8. PubMed ID: 24848060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tight security bounds for decoy-state quantum key distribution.
    Yin HL; Zhou MG; Gu J; Xie YM; Lu YS; Chen ZB
    Sci Rep; 2020 Aug; 10(1):14312. PubMed ID: 32868774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method.
    Mao CC; Zhou XY; Zhu JR; Zhang CH; Zhang CM; Wang Q
    Opt Express; 2018 May; 26(10):13289-13300. PubMed ID: 29801354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental composable security decoy-state quantum key distribution using time-phase encoding.
    Yin HL; Liu P; Dai WW; Ci ZH; Gu J; Gao T; Wang QW; Shen ZY
    Opt Express; 2020 Sep; 28(20):29479-29485. PubMed ID: 33114847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental underwater quantum key distribution.
    Feng Z; Li S; Xu Z
    Opt Express; 2021 Mar; 29(6):8725-8736. PubMed ID: 33820314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proof-of-principle demonstration of parametric down-conversion source-based quantum key distribution over 40 dB channel loss.
    Zhang CH; Wang D; Zhou XY; Wang S; Zhang LB; Yin ZQ; Chen W; Han ZF; Guo GC; Wang Q
    Opt Express; 2018 Oct; 26(20):25921-25933. PubMed ID: 30469686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-key analysis for twin-field quantum key distribution based on generalized operator dominance condition.
    Wang RQ; Yin ZQ; Lu FY; Wang R; Wang S; Chen W; Huang W; Xu BJ; Guo GC; Han ZF
    Opt Express; 2020 Jul; 28(15):22594-22605. PubMed ID: 32752517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Security analysis of quantum key distribution on passive optical networks.
    Lim K; Ko H; Suh C; Rhee JK
    Opt Express; 2017 May; 25(10):11894-11909. PubMed ID: 28788747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.
    Song TT; Qin SJ; Wen QY; Wang YK; Jia HY
    Sci Rep; 2015 Oct; 5():15276. PubMed ID: 26471947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of underwater quantum key distribution with polarization encoding.
    Zhao SC; Han XH; Xiao Y; Shen Y; Gu YJ; Li WD
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):883-892. PubMed ID: 31045017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.