These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37221806)

  • 41. Ultra-broadband 1 × 2 3 dB power splitter using a thin-film lithium niobate from 1.2 to 2 µm wave band.
    Yi Q; Pan A; Xia J; Zeng C; Shen L
    Opt Lett; 2023 Oct; 48(20):5375-5378. PubMed ID: 37831871
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrahigh-speed graphene-based optical coherent receiver.
    Wang Y; Li X; Jiang Z; Tong L; Deng W; Gao X; Huang X; Zhou H; Yu Y; Ye L; Xiao X; Zhang X
    Nat Commun; 2021 Aug; 12(1):5076. PubMed ID: 34417461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler.
    Halir R; Roelkens G; Ortega-Moñux A; Wangüemert-Pérez JG
    Opt Lett; 2011 Jan; 36(2):178-80. PubMed ID: 21263492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Folded Heterogeneous Silicon and Lithium Niobate Mach-Zehnder Modulators with Low Drive Voltage.
    Sun S; Xu M; He M; Gao S; Zhang X; Zhou L; Liu L; Yu S; Cai X
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-Production-Rate Fabrication of Low-Loss Lithium Niobate Electro-Optic Modulators Using Photolithography Assisted Chemo-Mechanical Etching (PLACE).
    Wu R; Gao L; Liang Y; Zheng Y; Zhou J; Qi H; Yin D; Wang M; Fang Z; Cheng Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-efficient coupler for thin-film lithium niobate waveguide devices.
    Hu C; Pan A; Li T; Wang X; Liu Y; Tao S; Zeng C; Xia J
    Opt Express; 2021 Feb; 29(4):5397-5406. PubMed ID: 33726076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low V
    Liu Y; Li H; Liu J; Tan S; Lu Q; Guo W
    Opt Express; 2021 Mar; 29(5):6320-6329. PubMed ID: 33726156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. C-band four-channel CWDM (de-)multiplexers on a thin film lithium niobate-silicon rich nitride hybrid platform.
    Liu Y; Huang X; Guan H; Yu Z; Wei Q; Fan Z; Han W; Li Z
    Opt Lett; 2021 Oct; 46(19):4726-4729. PubMed ID: 34598184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-Chip Integrated Yb
    Zhang Z; Fang Z; Zhou J; Liang Y; Zhou Y; Wang Z; Liu J; Huang T; Bao R; Yu J; Zhang H; Wang M; Cheng Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bidirectional interconversion of microwave and light with thin-film lithium niobate.
    Xu Y; Sayem AA; Fan L; Zou CL; Wang S; Cheng R; Fu W; Yang L; Xu M; Tang HX
    Nat Commun; 2021 Jul; 12(1):4453. PubMed ID: 34294711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform.
    Ahmed ANR; Nelan S; Shi S; Yao P; Mercante A; Prather DW
    Opt Lett; 2020 Mar; 45(5):1112-1115. PubMed ID: 32108783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compact 100GBaud driverless thin-film lithium niobate modulator on a silicon substrate.
    Chen G; Chen K; Zhang J; Gan R; Qi L; Fan X; Ruan Z; Lin Z; Liu J; Lu C; Tao Lau AP; Dai D; Guo C; Liu L
    Opt Express; 2022 Jul; 30(14):25308-25317. PubMed ID: 36237063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator.
    Yang W; Yin M; Li Y; Wang X; Wang Z
    Opt Express; 2013 Nov; 21(23):28423-31. PubMed ID: 24514353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and resonator-assisted characterization of high-performance lithium niobate waveguide crossings.
    Chen Y; Zhang K; Feng H; Sun W; Wang C
    Opt Lett; 2023 May; 48(9):2218-2221. PubMed ID: 37126238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-Broadband Mode (De)Multiplexer on Thin-Film Lithium Niobate Platform Adopting Phase Control Theory.
    Yin K; Jiao W; Wang L; Zhu S
    Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337744
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-µm wavelength.
    Pan B; Hu J; Huang Y; Song L; Wang J; Chen P; Yu Z; Liu L; Dai D
    Opt Express; 2021 Jun; 29(12):17710-17717. PubMed ID: 34154047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Widely tunable O-band lithium niobite/III-V transmitter.
    Han Y; Zhang X; Ma R; Xu M; Tan H; Liu J; Wang R; Yu S; Cai X
    Opt Express; 2022 Sep; 30(20):35478-35485. PubMed ID: 36258498
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate.
    Qiu W; Ndao A; Vila VC; Salut R; Courjal N; Baida FI; Bernal MP
    Opt Lett; 2016 Mar; 41(6):1106-9. PubMed ID: 26977645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrode-free photonic electric field sensor on thin film lithium niobate with high sensitivity.
    Xue Y; Ruan Z; Liu L
    Opt Lett; 2022 Apr; 47(8):2097-2100. PubMed ID: 35427346
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth.
    Weigel PO; Zhao J; Fang K; Al-Rubaye H; Trotter D; Hood D; Mudrick J; Dallo C; Pomerene AT; Starbuck AL; DeRose CT; Lentine AL; Rebeiz G; Mookherjea S
    Opt Express; 2018 Sep; 26(18):23728-23739. PubMed ID: 30184869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.